Planet Earth

Scientists Have Identified The Secret That Fuels Yellowstone’s Explosive Hellfire

It’s the prettiest powder keg on the planet – the Yellowstone supervolcano, simmering under the mystique and grandeur of the national park that adorns the fearsome caldera. And scientists just got one step closer to understanding the hidden geology of this epic blowhole.

Using supercomputers to model the behaviour of two known magma chambers concealed below the surface of Yellowstone, scientists have identified a ‘transition zone’ where the magma bodies almost meet.

Here, they form a vast slab of solidified, pressure-trapping rock that could be what fuels the supervolcano’s hellish explosions.

“We think that this structure is what causes the rhyolite-basalt volcanism throughout the Yellowstone hotspot, including supervolcanic eruptions,” says geologist Ilya Bindeman from the University of Oregon.

“This is the nursery, a geological and petrological match with eruptive products.”

The mid-crustal sill that separates magma under Yellowstone (Dylan Colon)

Bindeman and his team detected this naturally occurring munitions dump underground by running simulations based on recent research from scientists at the University of Utah, who used seismic imaging to detect not just one but two gargantuan magma chambers buried within the crust of Yellowstone caldera.

To investigate how these dual chambers of molten rock came to be – and to try to understand the magma transfer relationship between them – Bindeman and colleagues ran computer simulations tracing Yellowstone’s hypothetical evolution over 7 million years, to see how these disparate chambers might form.

Related Post

The numbers suggest the seismic readings aren’t wrong, with repeated simulations producing two magma chambers, separated by a transition zone made up of what’s called a mid-crustal sill composed of cooler magma, which is sandwiched between the hotter, more viscous reservoirs.

Per the modelling, this rock shelf is located about 10 kilometres (6.2 miles) below the surface of Yellowstone, and is between 10 to 15 kilometres (9.3 miles) thick.

The sill is composed of solidified gabbro, a rock formed from cooled magma, and the researchers say it’s possible the same phenomenon forms in other supervolcanoes around the world.

Due to the simulated basis of the study, we can only hypothesise about the mid-crustal sill’s existence for now, but given the data confirm seismic observations of the caldera, the team thinks their findings offer the first glimpse of how magma distributes itself inside the supervolcano.

While these insights don’t necessarily tell us any more about how or when Yellowstone might next erupt, it does bring us closer to that kind of understanding – and when we’re talking about an event that could choke the planet in a catastrophic volcanic winter, that’s some pretty important stuff to know.

The findings are reported in Geophysical Research Letters.

Read More On This At ScienceAlert – Latest

Recent Posts

What Did the Inquisition Cover Up? The Secrets Hidden by Historians and the Church

History, they say, is written by the victors. But what happens when the victors have…

2 months ago

The Mysterious Visitor of 1985: What Soviet Astronomers Witnessed—and Why We Still Don’t Understand It

On August 7, 1985, a group of Soviet astronomers made a discovery that would baffle…

3 months ago

The Forces That Rule the World and Humanity’s Role in a New Era

In the opening months of 2025, the world stands at a pivotal crossroads, a moment…

3 months ago

Haunting Snapshot: The Ghostly Figure That Chilled a Night by the Fire

Imagine a crisp, moonlit night, the kind where the air is thick with mystery and…

3 months ago

Has Nibiru Finally Been Found? Astronomers Spot Mysterious Object in Deep Space

In a stunning turn of events that has captivated both professional astronomers and skywatching enthusiasts,…

3 months ago

Explosive Vatican Revelation: Secret Document on UFOs and Teleportation Lands in the Hands of New Pope Leo XIV

A century-old secret may soon see the light of day. Deep within the labyrinthine Apostolic…

3 months ago