Connect with us

Wormholes or tunnels in the fabric of spacetime are terribly unstable. As soon as at least one photon hits them, the wormhole closes instantly. A new study suggests that the secret to a stable wormhole is in their form.

Wormholes, if they exist, will allow us to travel from point A to some extremely distant point B without worrying about travel time. The transition would be incredibly fast. Real cheat code of the universe. See a star for millions of light years? You could reach it in just a few minutes if you had a wormhole leading to it. No wonder this is a very popular science fiction theme.

But wormholes are not just a figment of our imagination, created to carve out all the boring scenes of interstellar travel (and this is centuries and millennia). We learned about them through Einstein’s general theory of relativity: matter and energy bend and deform the fabric of space-time, the curvature of which tells matter how to move.

Therefore, when it comes to wormholes, you just need to ask yourself: is it possible to deform space-time so that it overlaps itself, forming a tunnel between two distant points? The answer was given in the 1970s – yes.

Wormholes are entirely possible and not forbidden by the general theory of relativity. But the wormholes are very unstable, because, in essence, they consist of two black holes in contact with each other and forming a tunnel. That is, we are talking about points of infinite density, surrounded by areas known as the event horizon – one-sided space barriers. If you cross the event horizon of a black hole, you will never go back.

To solve this problem, the entrance to the wormhole must be outside the event horizon. Thus, you can cross the wormhole without touching the barrier. But as soon as you enter a wormhole located between huge masses, the gravity of your presence will distort the wormhole tunnel, collapsing it. Slammed shut, the tunnel will leave two lonely black holes, separated by a space in which the remains of your body will hang.

But it turns out there is a way to place the entrance to the wormhole away from the event horizon and make the tunnel stable enough for you to get through it. For this, material with a negative mass is needed. This is an ordinary mass, but with a minus sign. And if you put together enough negative mass in one place, you could use it to keep the wormhole open.

As far as we know, a substance with a negative mass does not exist. In any case, there is no evidence that it exists. Moreover, if it were, it would violate many laws of the Universe, such as inertia and conservation of momentum. For example, if you kicked a ball with a negative mass, it would fly backward. If you place an object with a negative mass next to an object with a positive mass, they will not be attracted. On the contrary, objects will repel each other, instantly accelerating.

Since negative mass seems like a myth, it can be assumed that wormholes are unlikely to exist in the universe. But the idea of ​​wormholes is based on the mathematics of the general theory of relativity – our current understanding of how gravity works. More precisely, our current, incomplete understanding of how gravity works.

We know that the general theory of relativity does not describe all the gravitational interactions in the universe. She gives in to strong gravity with a small body size. For example, before the bowels of black holes. To solve this problem, we need to turn to the quantum theory of gravity, which would combine our understanding of the world of subatomic particles with our broader understanding of gravity. But every time scientists try to put it together, everything just falls apart.

However, we have some clues on how quantum gravity can work, and we can understand wormholes. It is possible that a new and improved understanding of gravity will show that we do not need negative mass matter at all, and that stable, passable wormholes are real. A couple of theoreticians from Tehran University in Iran have published a new study of wormholes.

They applied some methods that allowed them to understand how quantum mechanics can change the standard general picture of relativity. Scientists have found that passable wormholes can exist without a substance with negative mass, but only if the entrance does not represent an ideal sphere, but is slightly elongated.

The results are interesting, but there is one snag. These hypothetical passable wormholes are tiny. Very tiny. Wormholes will be only 30% longer than Planck’s length – 1.6 x 10 ^ 35 meters. The traveler should be the same size. Yes, in addition, this microscopic traveler should fly at almost the speed of light. Despite emerging problems, the study opens a small crack, so to speak, for a look at the existence of wormholes, which can be expanded in the course of further research.

Comments

Space

Voyager 2 has discovered something amazing: Denser space outside the solar system

In November 2018, after a 41-year voyage, Voyager 2 crossed the boundary beyond which the Sun’s influence ends, and entered interstellar space. But the mission of the little probe is not yet complete – it continues to make amazing discoveries

Perhaps the probes have found some kind of traffic jam at the edge of the solar system. The Voyager flight continues and we will soon find out what it was.

Voyager 2 discovered something amazing: as the distance from the Sun increases, the density of space increases.

Voyager 1, which entered interstellar space in 2012, transmitted similar indicators to Earth. New data have shown that the increase in density may be a feature of the interstellar medium.

The solar system has several boundaries, one of which, called the heliopause, is determined by the solar wind, or rather by its significant weakening. The space inside the heliopause is the heliosphere, and the space outside is the interstellar medium. But the heliosphere is not round. It looks more like an oval, in which the solar system is at the leading edge, and a kind of tail stretches behind it.

Both Voyagers crossed the heliopause at the leading edge, but within 67 degrees heliographic latitude and 43 degrees longitude apart.

Interstellar space is usually considered a vacuum, but this is not entirely true. The density of matter is extremely small, but it still exists. In the solar system, the solar wind has an average density of protons and electrons from 3 to 10 particles per cubic centimeter, but it is lower the further from the Sun.

The average concentration of electrons in the interstellar space of the Milky Way is estimated to be about 0.037 particles per cubic centimeter. And the plasma density in the outer heliosphere reaches approximately 0.002 electrons per cubic centimeter. When the Voyager probes crossed the heliopause, their instruments recorded the electron density of the plasma through plasma oscillations.

Voyager 1 crossed the heliopause on August 25, 2012 at a distance of 121.6 astronomical units from the Earth (121.6 times the distance from Earth to the Sun – about 18.1 billion km). When he first measured plasma oscillations after crossing the heliopause on October 23, 2013 at a distance of 122.6 astronomical units (18.3 billion km), he found a plasma density of 0.055 electrons per cubic centimeter.

After flying another 20 astronomical units (2.9 billion kilometers), Voyager 1 reported an increase in the density of interstellar space to 0.13 electrons per cubic centimeter.

Voyager 2 crossed the heliopause on November 5, 2018 at a distance of 119 astronomical units (17.8 billion kilometers. On January 30, 2019, it measured plasma oscillations at a distance of 119.7 astronomical units (17.9 billion kilometers), finding that the density plasma is 0.039 electrons per cubic centimeter.

In June 2019, Voyager 2’s Instruments showed a sharp increase in density to about 0.12 electrons per cubic centimeter at a distance of 124.2 astronomical units (18.5 billion kilometers).

What caused the increase in the density of space? One theory is that the lines of force of the interstellar magnetic field become stronger with distance from the heliopause. This can cause electromagnetic ion cyclotron instability. Voyager 2 did detect an increase in the magnetic field after crossing the heliopause.

Another theory is that the material carried away by the interstellar wind should slow down in the heliopause, forming a kind of plug, as evidenced by the weak ultraviolet glow detected by the New Horizons probe in 2018, caused by the accumulation of neutral hydrogen in the heliopause.

Continue Reading

Space

NASA has banned fighting and littering on the moon

New details of the agreement signed by representatives of a number of countries on the development of the moon and the extraction of minerals within the framework of the Artemis program have appeared. Reported by the National Aeronautics and Space Administration (NASA).

So, astronauts involved in the mission are prohibited from littering and fighting on the territory of a natural satellite of the Earth.

So, we present to you the new rules for being on the Moon:

Everyone comes in peace;

Confidentiality is prohibited, all launched objects must be identified and registered;

All travel participants agree to help each other in case of emergencies;

All received data is transferred to the rest of the participants, and space systems must be universal;

Historic sites must be preserved and all rubbish must be disposed of;

Rovers and spacecraft should not interfere with other participants.

“”It is important not only to go to the moon with our astronauts, but also that we bring our values ​​with us,” said Mike Gold, acting head of NASA’s international and inter-agency relations.

According to him, violators of the above rules will be asked to “just leave” the territory of the moon.

The effect of these principles so far applies to eight signatory countries of the agreement: the USA, Australia, Canada, Italy, Japan, Luxembourg, the United Arab Emirates and the United Kingdom. Countries other than China can join if they wish.

 It should be noted that at the moment NASA is prohibited from signing any bilateral agreements with the PRC leadership.

The first NASA mission to the moon, known as “Artemis 1”, is scheduled for 2021 without astronauts, and “Artemis 2” will fly with a crew in 2023.

Continue Reading

Space

Methane snow found on the tops of Pluto’s equatorial mountains

Scientists believe that it arose as a result of the accumulation of large amounts of methane at an altitude of several kilometers above the surface of the planet.

In the images of the Cthulhu region – a dark region in the equatorial regions of Pluto – planetary scientists have found large reserves of methane snow that covers the peaks of local mountains and hills. It formed quite differently from how snow forms on Earth, astronomers write in the scientific journal Nature Communications.

“The white caps on the tops of Pluto’s mountains did not arise from the cooling of air currents that rise along the slopes into the upper atmosphere, as it happens on Earth, but from the accumulation of large amounts of methane at an altitude of several kilometers above Pluto’s surface. This gas condensed on the mountain tops, “the scientists write.

We owe almost everything we know about Pluto to the New Horizons interplanetary station. It was launched in January 2006, and in mid-July 2015 the station reached the Pluto system. New Horizons flew just 13 thousand km from the dwarf planet, taking many photographs of its surface. 

New Horizons data indicated an interesting feature of Pluto – in its depths, a giant subglacial ocean of liquid water can be hidden. It can be a kind of engine of those geological processes, traces of which can be seen on the surface of a dwarf planet. Because of this discovery of New Horizons, many discussions began among planetary scientists. Scientists are trying to understand how such a structure could have arisen, as well as to find out the appearance of Pluto in the distant past.

Members of the New Horizons science team and their colleagues from France, led by planetary scientist from NASA’s Ames Research Center (USA) Tanguy Bertrand, have discovered another unusual feature of Pluto. They studied the relief of one of the regions of the dwarf planet – the Cthulhu region. This is what astronomers call a large dark region at Pluto’s equator, which is whale-like in shape and is covered in many craters, mountains and hills.

Snow in Pluto’s mountains

By analyzing images of these structures taken by the LORRI camera installed on board New Horizons, astronomers have noticed many blank spots on the slopes of the highest mountain peaks. Having studied their composition, scientists have found that they consist mainly of methane.

Initially, planetary scientists assumed that these are deposits of methane ice. However, Bertrand and his colleagues found that the slopes and even the tops of Pluto’s equatorial mountains are actually covered not only with ice, but also with exotic methane snow that forms right on their surface.

Planetary scientists came to this conclusion by calculating how methane behaves in Pluto’s atmosphere. In doing so, they took into account how the molecules of its gases interact with the sun’s rays and other heat sources. It turned out that at the equator of Pluto, at an altitude of 2-3 km from its surface, due to the special nature of the movement of winds, unique conditions have formed, due to which snow is formed from methane vapor.

Unlike Earth, where such deposits are formed as a result of the rise of warm air into the upper atmosphere, on Pluto this process goes in the opposite direction – as a result of contact of the cold surface of the peaks and slopes of mountains with warm air masses from the relatively high layers of the dwarf planet’s atmosphere.

Previously, as noted by Bertrand and his colleagues, scientists did not suspect that this was possible. The fact is that they did not take into account that due to the deposition of even a small amount of methane snow and ice, the reflectivity of the peaks and slopes of mountains in the Cthulhu region increases. As a result, their surface temperature drops sharply, and snow forms even faster.

Scientists suggest that another mysterious feature of Pluto’s relief could have arisen in a similar way – the so-called Tartarus Ridges, located east of the Sputnik plain. A distinctive feature of this mountainous region is strange peaks that are shaped like skyscrapers or blades. Bertrand and his colleagues suggest that these peaks are also methane ice deposits that grow “from top to bottom.”

Continue Reading
Advertisement

DO NOT MISS

Trending