**Wormholes or tunnels in the fabric of spacetime are terribly unstable. As soon as at least one photon hits them, the wormhole closes instantly. A new study suggests that the secret to a stable wormhole is in their form.**

Wormholes, if they exist, will allow us to travel from point A to some extremely distant point B without worrying about travel time. The transition would be incredibly fast. Real cheat code of the universe. See a star for millions of light years? You could reach it in just a few minutes if you had a wormhole leading to it. No wonder this is a very popular science fiction theme.

But wormholes are not just a figment of our imagination, created to carve out all the boring scenes of interstellar travel (and this is centuries and millennia). We learned about them through Einstein’s general theory of relativity: matter and energy bend and deform the fabric of space-time, the curvature of which tells matter how to move.

Therefore, when it comes to wormholes, you just need to ask yourself: is it possible to deform space-time so that it overlaps itself, forming a tunnel between two distant points? The answer was given in the 1970s – yes.

Wormholes are entirely possible and not forbidden by the general theory of relativity. But the wormholes are very unstable, because, in essence, they consist of two black holes in contact with each other and forming a tunnel. That is, we are talking about points of infinite density, surrounded by areas known as the event horizon – one-sided space barriers. If you cross the event horizon of a black hole, you will never go back.

To solve this problem, the entrance to the wormhole must be outside the event horizon. Thus, you can cross the wormhole without touching the barrier. But as soon as you enter a wormhole located between huge masses, the gravity of your presence will distort the wormhole tunnel, collapsing it. Slammed shut, the tunnel will leave two lonely black holes, separated by a space in which the remains of your body will hang.

But it turns out there is a way to place the entrance to the wormhole away from the event horizon and make the tunnel stable enough for you to get through it. For this, material with a negative mass is needed. This is an ordinary mass, but with a minus sign. And if you put together enough negative mass in one place, you could use it to keep the wormhole open.

As far as we know, a substance with a negative mass does not exist. In any case, there is no evidence that it exists. Moreover, if it were, it would violate many laws of the Universe, such as inertia and conservation of momentum. For example, if you kicked a ball with a negative mass, it would fly backward. If you place an object with a negative mass next to an object with a positive mass, they will not be attracted. On the contrary, objects will repel each other, instantly accelerating.

Since negative mass seems like a myth, it can be assumed that wormholes are unlikely to exist in the universe. But the idea of wormholes is based on the mathematics of the general theory of relativity – our current understanding of how gravity works. More precisely, our current, incomplete understanding of how gravity works.

We know that the general theory of relativity does not describe all the gravitational interactions in the universe. She gives in to strong gravity with a small body size. For example, before the bowels of black holes. To solve this problem, we need to turn to the quantum theory of gravity, which would combine our understanding of the world of subatomic particles with our broader understanding of gravity. But every time scientists try to put it together, everything just falls apart.

However, we have some clues on how quantum gravity can work, and we can understand wormholes. It is possible that a new and improved understanding of gravity will show that we do not need negative mass matter at all, and that stable, passable wormholes are real. A couple of theoreticians from Tehran University in Iran have published a new study of wormholes.

They applied some methods that allowed them to understand how quantum mechanics can change the standard general picture of relativity. Scientists have found that passable wormholes can exist without a substance with negative mass, but only if the entrance does not represent an ideal sphere, but is slightly elongated.

The results are interesting, but there is one snag. These hypothetical passable wormholes are tiny. Very tiny. Wormholes will be only 30% longer than Planck’s length – 1.6 x 10 ^ 35 meters. The traveler should be the same size. Yes, in addition, this microscopic traveler should fly at almost the speed of light. Despite emerging problems, the study opens a small crack, so to speak, for a look at the existence of wormholes, which can be expanded in the course of further research.