Connect with us

Space

Why human will not be able to move to the Earth’s twin planet, even if it exists

Alien: Covenant Movie

Almost every star you see in the night sky serves as the center of the planetary system, and there are about 100 billion stars in our galaxy. But are there worlds like Earth?

Just a couple of days after launching in May 2009, it took the Kepler space telescope to discover its first potentially inhabited planet in the sun-like star Kepler-22. Another 2.5 years were spent confirming the status of the found exoplanet. Finally, on December 5, 2011, the first exoplanet was officially announced, the orbit of which is in the habitable zone of the parent star. Unfortunately, despite all the similarities, Kepler-22 b turned out to be an ocean planet rather than a rocky world like Earth.

The Kepler telescope is able to determine planets only by the transit method, when the planet passes through the star’s disk, slightly changing its brightness for observers. Therefore, the vast majority of exoplanets discovered with its help revolve in orbits around small stars – red dwarfs. Their habitat zones are much closer, and the period of revolution of the planets around them does not exceed several days, which greatly simplifies the search.

According to scientists, for every planet whose transit through the disk of the parent star we can observe, from 10 to 100 of them are located at a different angle. And we are only talking about red dwarf planets. Although in the Milky Way, most of the stars are red dwarfs.

Despite the fact that our solar system can be called rare for the Milky Way, we must understand that we are talking about tens of billions of similar systems. It is difficult to imagine that only one turned out to be a habitable planet.

In August 2019, the Astronomical Journal published the results of a study that gives the most accurate estimate of the presence in our galaxy of Earth-like planets in the orbits of sun-like stars. As part of this study, an interesting method has been developed to estimate the number of such planets. The results are simply amazing: 

Planets similar in size to the Earth, with a period of revolution around their star from 237 to 500 days, should occur in about every fourth system formed by a star like the Sun.

Thus, we get at least two billion planets in the Milky Way, which should be similar to the Earth in most respects. Does this mean that we have two billion potentially inhabited worlds?

If we talk not so much about intelligent life as about biological life as a whole, we know that it is enough to originate, and it can adapt to almost any conditions. An excellent confirmation of this is extremophiles, various organisms that can survive in various extreme conditions, from unbearable heat and cold to exposure to chemicals poisonous to people and even outer space (for example, tardigrades).

But can we find a double planet of the Earth, which will be able to move if necessary? This is where the chances begin to tend to zero. Today we can confidently say that life was emerging on Earth at a time when it was literally like hell, and we would definitely not be able to exist in those conditions.

Life itself has made the Earth what it is now. And that is why, if we find a planet as similar to ours as possible, it will mean that it has formed over billions of years under the influence of biological life on it, and since we are not part of this biosphere, we will have to adapt to it.

This may not be any easier than, for example, colonizing Mars, because the history of the formation of another biosphere will be extremely different from ours. Even if the biochemistry of the creatures on this planet is as similar to ours as possible, it will be different.

The “native” virus drove us home for two months – can you imagine what the virus will do to us from another planet?

It is just right to recall the “War of the Worlds” by Herbert Wells.

Even if we discover the existence of billions of inhabited worlds, this does not mean that you can pack your bags, setting off in search of a new beginning on another planet. We will remain chained to the Earth and will continue to be a part of it. Earth is us. So our main task should be to preserve it for our own sake.

Comments

Space

What did Mars look like millions of years ago? New theory

At the moment, Mars is considered the most suitable planet for human life. It is in many ways similar to our native Earth: the surface is solid, the day lasts almost the same 24 hours and periodically there is a change of seasons. 

Scientists are sure that millions of years ago between our planet and Mars there were even more similarities, such as the presence of water and living organisms. He has one snag – in time immemorial the sun was much weaker than it is now, and Mars was quite far from it and was not going to approach. It turns out that the planet was cold and there could not be rivers and oceans on it. 

But how, then, can explain the presence of valleys and depressions on its surface, which were clearly formed as a result of the flow of water? Canadian scientists have started looking for an explanation for this mysterious phenomenon. 

In the course of scientific work, they managed to put forward a theory that greatly changes the idea of ​​scientists about the past of the Red Planet. Perhaps Mars looked like a giant snowball.

Millions of years ago, Mars was hardly a warm place

Water on Mars

The essence of the theory was published in the scientific journal Nature Geoscience . According to one of the study’s authors, Anna Grau Galofre , over the past 40 years, the scientific community has believed that irregularities on the surface of Mars were formed by the movement of rivers. 

However, there are distinctive features between valleys and depressions in different regions of the planet. To find out what factors could affect the structure of the irregularities, scientists decided to find a place on Earth, the surface of which is as close as possible to the Martian landscape. However, researchers have long known about the existence of such a place.

Mars on Earth

One of the most Mars-like places on our planet is considered the uninhabited island of Devon, located in northern Canada. Almost all of its surface is a cold and dry desert. If you look at the island from a bird’s eye view or even from a satellite, you will notice that its surface is really very similar to the vastness of the Red Planet. 

It is also full of all kinds of irregularities and scientists are well aware of how they were formed. Since Devon Island is a rather cold place, most of the rivers there flow under a layer of ice. Part of the ice sheet melted over time and the valleys left by the rivers are now clearly visible to us. In their structure, they are very different from the valleys formed by rivers that flow in the open.

The surface of Devon Island is very similar to the Martian landscape

So, scientists became aware of the distinctive features of the two types of valleys. Based on this data, they developed an algorithm that was able to quickly study photographs of 10,000 Martian irregularities. 

Among them, the researchers found many valleys, which clearly formed under a thick layer of ice. Most of them were formed about 3.8 billion years ago. It turns out that once upon a time, although not all, but most of Mars, was covered with ice and snow. But scientists assumed that it was very similar to our blue-green Earth.

Above is the surface of Mars, and below is the surface of Devon Island

Life on Mars

If Mars really was covered with layers of ice, then the probability of the existence of living organisms on it increases markedly. The fact is that microorganisms could well inhabit the waters hidden under the ice sheet. And this shield, in turn, could perfectly protect them from cosmic radiation. 

Indeed, the Red Planet has a very weak magnetic field, which is precisely what serves to protect against harmful radiation. So, despite the changes in the idea of ​​the appearance and conditions of ancient Mars, the probability that at least primitive creatures lived on it remained. Maybe someday their traces will be discovered by devices like InSight and we will gain confidence that life on other planets can exist.

According to the new theory, 3.8 billion years ago Mars looked something like this

The computer algorithm created within the framework of scientific work will not disappear. According to the developers, it can be useful for studying the past of the Earth. 

Technologies existing at the moment allow us to look at history no further than 5 million years, and a new algorithm can reconstruct the history of glaciations on our planet over the past 35 million years. It sounds intriguing, so we can only hope that new discoveries will not be long in coming.

Continue Reading

Space

Neutron star formed in front of astronomers

Astronomers fought their way through the dusty curtain to the newborn neutron star

Thirty-three years ago, astronomers recorded a supernova explosion, 1987A. And just recently they found a neutron star formed in this cataclysm. This is the youngest such object in the history of observations. For some time, scientists doubted that they were observing exactly a neutron star, but fresh scientific work has provided very convincing evidence of this.

On February 23, 1987, male astronomers (and also female astronomers) received a gift from the Universe. On this day, supernova 1987A was discovered, which exploded in the Large Magellanic Cloud – a nearby dwarf galaxy, a satellite of the Milky Way.

As you know, a star dying in a supernova explosion (or rather, what is left of it) turns either into a black hole or into a neutron star. Scientists were confident that in the case of 1987A, the second option was realized. This was indicated by the flux of neutrinos recorded by terrestrial detectors simultaneously with the light of the flash.

Recall that a neutron star is a celestial body with a diameter of only a few kilometers, which, at the same time, is comparable in mass to the Sun. Due to the monstrous density and the most powerful magnetic field, the matter inside such an object is in states that cannot be reproduced in terrestrial laboratories. Therefore, neutron stars are of great interest to physicists. And, of course, astronomers who seek to figure out the ins and outs of every object and process in the universe.

The 1987A explosion gave researchers the first chance to study the neutron star that formed before their eyes and understand what these celestial bodies are like immediately after birth. All other known neutron stars are much older.

So, the second place belongs to the recently discovered object , which is 240 years old, and even it is surprisingly young compared to its counterparts millions of years old.

Let us clarify that new supernova explosions are discovered regularly and in large numbers , but in galaxies that are too distant to make out the formed neutron star. And the 1987A flare occurred only 168 thousand light years from Earth. It was the closest supernova explosion seen since the invention of the telescope.

Supernova Remnant 1987A at different wavelengths. The inset shows the radiation of a hot central object.Illustration ALMA (ESO / NAOJ / NRAO), P. Cigan, R. Indebetouw; NRAO / AUI / NSF, B. Saxton; NASA / ESA.

Alas, by pointing telescopes at the site of the 1987A flare, astronomers saw only a dense cloud of dust formed during a supernova explosion. For more than thirty years, using increasingly powerful instruments, scientists have tried to discern at least some trace of the central body. And finally they succeeded.

In 2019, the ALMA radio telescope helped astronomers see the supernova remnant 1987A in unprecedented detail. Thanks to this, astronomers discovered that there is a compact and very hot object in the center of the dust cloud. Although the “heater” itself remains hidden behind the dust curtain, the telescope records the radiation of the dust heated by it.

“We were very surprised to see this hot ball formed in a thick cloud of dust in a supernova remnant,” says co-author Mikako Matsuura of Cardiff University. “There must be something in the cloud that heats the dust and makes it glow This is why we assumed there was a neutron star hiding inside the dust cloud.

However, the radiation power seemed suspicious to scientists. Could a neutron star be so hot? Or is there something else lurking in the center of the dust cloud?

“We thought that such a neutron star might be too bright to exist. But then Dani Page and his team published a study that showed that a neutron star could actually be so bright because it is so young,” Matsuura says.

Supernova Remnant 1987A. Imaging in radio waves, visible light and X-rays. Translated by Vesti.Ru.Illustration ALMA (ESO / NAOJ / NRAO), P. Cigan, R. Indebetouw; NRAO / AUI / NSF, B. Saxton; NASA / ESA.

The scientific article , published in the edition of the Astrophysical Journal by Dany Page of the National Autonomous University of Mexico and his colleagues, set the record straight. Experts have shown that the dust-heating object at the center of Supernova remnant 1987A not only could be a neutron star, but could hardly be anything else.

According to the calculations of Page and his co-authors, the temperature of a neutron star 30 years after its birth should be five million degrees. This is just enough to explain the observed heating of the dust.

In addition, the central object is located exactly where the neutron star should have been thrown by the explosion (by the way, at the time of the cataclysm, it was moving at a speed of hundreds of kilometers per second).

Finally, recall that the neutrinos recorded in 1987 indicate that a neutron star was formed during a supernova explosion, not a black hole.

However, theoretically, the central object can be a black hole, onto which a dense stream of matter falls. But this requires a fantastically accurate adjustment of its properties to observational data, which is extremely unlikely. So experts are confident that they have finally “groped” for a newborn neutron star.

We now see the 1987A supernova remnant as it was 33 years after the explosion. Perhaps, after a few more decades, the dust cloud dispersed a little and began to transmit the radiation from the central object. Scientists are looking forward to the moment when these rays will reach the Earth.

Continue Reading

Space

Scientists have confirmed that something else existed before our universe

American scientists, using mathematical tools, described the inhomogeneities of the cosmic relic radiation that arose immediately after the origin of the Universe. 

The authors believe that their results confirm the correctness of the Big Bounce hypothesis, according to which the emergence of our universe was the result of the collapse of some “previous” universe. The results are published in the journal Physical Review Letters.

While Einstein’s theory of general relativity explains a wide range of astrophysical and cosmological phenomena, some properties of the universe remain a mystery. In particular, it cannot explain the uneven distribution of galaxies and dark matter in space.

Since the 1980s, Pennsylvania State University researchers have been developing a cosmological paradigm based on the concept of loop quantum gravity. This paradigm, called loop quantum cosmology, describes all modern large structures in the Universe as quantum fluctuations of space-time that took place at the birth of the world.

According to the generally accepted theory of the Big Bang, it all started with a singularity – a state in which all matter and energy were compressed into one point. Then, in the first fraction of a second, during a period called inflation, space swelled to enormous proportions. But the Big Bang theory does not explain what happened before the singularity, so this state cannot be described in terms of the laws of physics and mathematics.

Scientists at Pennsylvania State University hold the alternative Big Bounce hypothesis, according to which the current expanding universe arose from the supercompressed mass of the universe of the previous phase. To describe this state, they use a universal mathematical apparatus that combines quantum mechanics and the theory of relativity.

The authors trace the origin of the structure of the Universe to the smallest inhomogeneities recorded against the background of microwave relict cosmic radiation, which was emitted when the Universe was only 380 thousand years old.

But this radiation itself has three mysterious anomalies that are difficult to explain using classical physics. These deviations are so serious that many physicists began to talk about a crisis in cosmology.

In a new study, scientists argue that, from a loop quantum cosmology perspective, describing inflation removes two major anomalies in the CMB distribution.

“Using quantum loop cosmology, we naturally resolved two of these anomalies, avoiding a potential crisis,” co-author Donghui Jeong, associate professor in the Department of Astronomy and Astrophysics, said in a university press release. anomalies suggests that we live in an exclusive universe.”

The authors believe that the inhomogeneities of the CMB are the result of inevitable quantum fluctuations in the early Universe. During the accelerated phase of expansion – inflation – these initially tiny fluctuations were stretched by gravity, reflected in the observed irregularities.

“The standard inflationary paradigm, based on general relativity, views spacetime as a smooth continuum,” says the first author, Professor Abhay Ashtekar, director of the Pennsylvania State Institute of Gravity and Space. but upon closer inspection, you can see that it is woven from densely packed one-dimensional strands. And quantum strands are woven into the fabric of spacetime. With these strands, loop quantum cosmology allows us to go beyond the continuum described by general relativity.”

Scientists hope that new satellite missions such as LiteBIRD and Cosmic Origins Explorer, aimed at detecting traces of primary gravitational waves in the background of the background radiation, will confirm their findings.

Continue Reading
Advertisement

DO NOT MISS

Trending