Connect with us

Hi, what are you looking for?

Space

Unusual signals come from the GJ 1151 system

Unusual signals come from the GJ 1151 system 1

Most likely, radio emission is created by the interaction of a planet the size of the Earth with the strong magnetic fields of its star.

Using the LOFAR low-frequency radio telescope, astronomers recorded unusual radio emission coming from the red dwarf GJ 1151, which is located at a distance of about 28 light-years from Earth, these signals, according to scientists, contain evidence of the auroras created by the interaction of the planet with the strongest magnetic fields of the star. The results of the study are presented in the journal Nature Astronomy.

“Radio emission from the interaction of a star and a planet was predicted more than thirty years ago, but only now we were able to identify its signature in the data. Success achieved paves the way for a new way to detect exoplanets in the habitable zone and study their surroundings, ”the authors of the study say.

Red dwarfs are the most common type of star in the Milky Way. They are much smaller and colder than the Sun and have extremely strong magnetic fields. This means that any potentially inhabited planet in the system of such a star, due to its proximity to it, is subjected to intense magnetic activity, which can heat it and even destroy the atmosphere. The radio emission associated with this process is one of the few tools available to evaluate this effect.

“The movement of the planet through the strong magnetic field of the red dwarf acts like an electric motor. This process generates a huge current that provokes radiance and creates radio emission, ”explained Harish Vedantam, lead author of the study from the Netherlands Institute of Radio Astronomy.

In the solar system, similar currents are not generated due to the weak magnetic field of the sun and the large distance to the planets. However, the interaction of the Io satellite with the magnetic field of Jupiter also creates a fairly bright radio emission, at low frequencies superior to the sun.

“We adapted our knowledge from decades of radio observations of Jupiter to the data on the star GJ 1151. For many years it was predicted that the Jupiter-Io system should exist in a larger version of the star-planet, and the radiation recorded by us from GJ 1151 is very well consistent with theory. Today we know that almost every red dwarf contains terrestrial planets, so there must be other stars showing such radiation,” Joe Cullingham added, the co-author of a study from the Netherlands Institute of Radio Astronomy.

Astronomers note that the sensitivity of modern instruments should allow them to find about a hundred more of such systems in the solar vicinity, and, more importantly, assess the conditions in which exoplanets reside in them.

“The main goal is to determine what effect the magnetic activity of a star has on the habitability of an exoplanet, and radio emission is the most important link in this puzzle,” Harish Vedantam concluded.

Comments

You May Also Like

Advertisement