Connect with us

Space

Trump’s ‘Space Force’ Is Serious And We Just Got a Bunch of New Details

Vice President Pence laid out an ambitious plan Thursday that would begin creating a military command dedicated to space and establish a “Space Force” as the sixth branch of the US military as soon as 2020, the first since the Air Force was formed shortly after World War II.

Pence warned of the advancements that potential adversaries are making and issued what amounted to a call to arms to preserve the military’s dominance in space.

“Just as we’ve done in ages past, the United States will meet the emerging threats on this new battlefield,” he said in a speech at the Pentagon.

“The time has come to establish the United States Space Force.”

But the monumental task of standing up a new military department, which would require approval by a Congress that shelved the idea last year, may require significant new spending and a reorganization of the largest bureaucracy in the world.

And the idea has already run into fierce opposition inside and outside the Pentagon, particularly from the Air Force, which could lose some of its responsibilities.

Defense Secretary Jim Mattis last year said he opposed a new department of the military “at a time when we are focused on reducing overhead and integrating joint warfighting functions.”

This week, Mattis said the Pentagon and the White House “are in complete alignment” on the need to view space as a warfighting domain. But he stopped short of endorsing a full-fledged Space Force.

In a briefing with reporters after Pence’s speech, Deputy Defense Secretary Patrick Shanahan suggested that Mattis’s comments opposing the Space Force were made at a different time, before the Pentagon received a bolstered budget.

White House officials have been working with national security leaders to aggressively move ahead without Congress.

The first step is creating a new US Space Command by the end of the year, which would be led by a four-star general, the way the Pentagon’s Indo-Pacific Command oversees those regions.

The new command would pull space experts from across the armed services, and there would be a separate acquisitions office, dedicated to buying satellites and developing new technology to help the military win wars in space.

After the announcement Thursday, President Trump tweeted, “Space Force all the way!”

For months, Trump has been calling for a Space Force, a new, free-standing military department, with its own chain of command and uniforms.

In a letter to supporters Thursday, the Trump 2020 campaign said it would sell a line of gear that could come with a logo of their choosing – including one labeled “Mars Awaits” – to commemorate “President Trump’s new Space Force,” according to a copy of the email – a move that fueled criticism that the effort was motivated by politics.

The White House intends to work with lawmakers to introduce legislation by early next year, a senior administration official said, with the hope of standing up the first new military department since the Air Force was formed in 1947.

Some members of Congress and military leaders have been warning that space is no longer a peaceful sanctuary, but a domain of conflict that needs more attention and resources.

Space is vital to the way the United States wages war; the Pentagon’s satellites are used for missile defense warnings, guiding precision munitions and providing communications and reconnaissance.

Russia and China have made significant advancements, challenging the United States’ assets in space.

In 2007, China blew up a dead weather satellite with a missile, creating a massive debris cloud in orbit, which Pence called “a highly provocative demonstration of China’s growing capability to militarize space”.

China also has demonstrated the ability to hit satellites in a much deeper orbit where the military parks some of its most sensitive assets.

In his speech, Pence acknowledged the difficulties in establishing a new service, and said the Pentagon would create an assistant secretary of defense for space, a top-level civilian who will report to the defense secretary “to oversee the growth and expansion of the sixth branch of service.”

The official must sort out many details, including how the Pentagon would recruit for the Space Force and compete for resources within the Pentagon. Even basic details, such as what uniforms and what rank structure the Space Force would use, must be decided.

Some members of Congress advocated last year for creating a Space Corps in the Air Force Department, similar to how the Marine Corps is part of the Navy Department. Elevating the proposal to create a new department will mean additional Pentagon bureaucracy, critics say.

Deborah James, who served as Air Force secretary in the Obama administration, said Trump’s decision to create a full new department is “a solution in search of a problem.”

Before Trump’s announcement in June that he wanted a Space Force, Mattis and Air Force Secretary Heather Wilson had cautioned against creating new Pentagon bureaucracy to address space issues. James said she thinks they’re now “stuck because the president announced this by surprise.”

Efforts to reach several senior Air Force officials were not successful Thursday. Wilson was traveling on business and not at the Pentagon when Pence made his announcement.

Gen. David L. Goldfein, the Air Force’s top officer, and Gen. Stephen Wilson, the vice chief, sat quietly in the Pentagon auditorium as Pence spoke.

Air Force Gen. Paul Selva, the Pentagon’s vice chairman of the Joint Chiefs of Staff, said in a briefing with reporters that the Pentagon is very much in favor of establishing a Space Command as a way to speed up efforts in space.

But when it comes to establishing a new branch of the military, Selva said, “there’s an obligation” to present a set of options that can be presented to Congress.

“He’s the commander in chief,” Selva said of the president.

The White House has pushed for Congress to invest an additional US$8 billion in national security space systems over the next five years.

The new command and reorganization “should be budget-neutral,” Scott Pace, the executive secretary of the National Space Council, said in an interview.

“However, going forward, there probably will need to be an increase in resources to buy improved capabilities and more warfighters as the Space Force matures.”

After Pence’s speech, Reps. Mike D. Rogers and Jim Cooper, members of the House Armed Services Committee, praised the move, saying a Space Force “will result in a safer, stronger America.”

“We have been warning for years of the need to protect our space assets and to develop more capable space systems,” they said in a joint statement.

In his speech, Pence urged the audience to support the administration’s effort to create the department.

Speaking to a room made up mostly of US troops in uniform, Pence said their “commander in chief is going to continue to work tirelessly toward this goal, and we expect you all to do the same.”

“The only thing we can’t afford is inaction,” he said.

2018 © The Washington Post

This article was originally published by The Washington Post.

Advertisement
Comments

Space

Study Reveals Six Galaxies Undergoing Sudden, Dramatic Transitions

Galaxies come in a wide variety of shapes, sizes and brightnesses, ranging from humdrum ordinary galaxies to luminous active galaxies. While an ordinary galaxy is visible mainly because of the light from its stars, an active galaxy shines brightest at its center, or nucleus, where a supermassive black hole emits a steady blast of bright light as it voraciously consumes nearby gas and dust.

Sitting somewhere on the spectrum between ordinary and active galaxies is another class, known as low-ionization nuclear emission-line region (LINER) galaxies. While LINERs are relatively common, accounting for roughly one-third of all nearby galaxies, astronomers have fiercely debated the main source of light emission from LINERs. Some argue that weakly active galactic nuclei are responsible, while others maintain that star-forming regions outside the galactic nucleus produce the most light.

A team of astronomers observed six mild-mannered LINER galaxies suddenly and surprisingly transforming into ravenous quasars–home to the brightest of all active galactic nuclei. The team reported their observations, which could help demystify the nature of both LINERs and quasars while answering some burning questions about galactic evolution, in the Astrophysical Journal on September 18, 2019. Based on their analysis, the researchers suggest they have discovered an entirely new type of black hole activity at the centers of these six LINER galaxies.

“For one of the six objects, we first thought we had observed a tidal disruption event, which happens when a star passes too close to a supermassive black hole and gets shredded,” said Sara Frederick, a graduate student in the University of Maryland Department of Astronomy and the lead author of the research paper. “But we later found it was a previously dormant black hole undergoing a transition that astronomers call a ‘changing look,’ resulting in a bright quasar. Observing six of these transitions, all in relatively quiet LINER galaxies, suggests that we’ve identified a totally new class of active galactic nucleus.”

All six of the surprising transitions were observed during the first nine months of the Zwicky Transient Facility (ZTF), an automated sky survey project based at Caltech’s Palomar Observatory near San Diego, California, which began observations in March 2018. UMD is a partner in the ZTF effort, facilitated by the Joint Space-Science Institute (JSI), a partnership between UMD and NASA’s Goddard Space Flight Center.

Changing look transitions have been documented in other galaxies–most commonly in a class of active galaxies known as Seyfert galaxies. By definition, Seyfert galaxies all have a bright, active galactic nucleus, but Type 1 and Type 2 Seyfert galaxies differ in the amount of light they emit at specific wavelengths. According to Frederick, many astronomers suspect that the difference results from the angle at which astronomers view the galaxies.

Type 1 Seyfert galaxies are thought to face Earth head-on, giving an unobstructed view of their nuclei, while Type 2 Seyfert galaxies are tilted at an oblique angle, such that their nuclei are partially obscured by a donut-shaped ring of dense, dusty gas clouds. Thus, changing look transitions between these two classes present a puzzle for astronomers, since a galaxy’s orientation towards Earth is not expected to change.

Frederick and her colleagues’ new observations may call these assumptions into question.

© R. Buta (University of Alabama/Image enhancement: Jean-Baptiste Faur Spiral Seyfert Galaxy NGC 3081: Seyfert galaxies are one of the two largest groups of active galaxies, along with quasars. They have quasar-like nuclei with very high surface brightnesses whose spectra reveal strong, high-ionisation emission lines, but unlike quasars, their host galaxies are clearly detectable.

© R. Buta (University of Alabama/Image enhancement: Jean-Baptiste Faur
Spiral Seyfert Galaxy NGC 3081: Seyfert galaxies are one of the two largest groups of active galaxies, along with quasars. They have quasar-like nuclei with very high surface brightnesses whose spectra reveal strong, high-ionisation emission lines, but unlike quasars, their host galaxies are clearly detectable.

“We started out trying to understand changing look transformations in Seyfert galaxies. But instead, we found a whole new class of active galactic nucleus capable of transforming a wimpy galaxy to a luminous quasar,” said Suvi Gezari, an associate professor of astronomy at UMD, a co-director of JSI and a co-author of the research paper. “Theory suggests that a quasar should take thousands of years to turn on, but these observations suggest that it can happen very quickly. It tells us that the theory is all wrong. We thought that Seyfert transformation was the major puzzle. But now we have a bigger issue to solve.”

Frederick and her colleagues want to understand how a previously quiet galaxy with a calm nucleus can suddenly transition to a bright beacon of galactic radiation. To learn more, they performed follow-up observations on the objects with the Discovery Channel Telescope, which is operated by the Lowell Observatory in partnership with UMD, Boston University, the University of Toledo and Northern Arizona University. These observations helped to clarify aspects of the transitions, including how the rapidly transforming galactic nuclei interacted with their host galaxies.

“Our findings confirm that LINERs can, in fact, host active supermassive black holes at their centers,” Frederick said. “But these six transitions were so sudden and dramatic, it tells us that there is something altogether different going on in these galaxies. We want to know how such massive amounts of gas and dust can suddenly start falling into a black hole. Because we caught these transitions in the act, it opens up a lot of opportunities to compare what the nuclei looked like before and after the transformation.”

Unlike most quasars, which light up the surrounding clouds of gas and dust far beyond the galactic nucleus, the researchers found that only the gas and dust closest to the nucleus had been turned on. Frederick, Gezari and their collaborators suspect that this activity gradually spreads from the galactic nucleus–and may provide the opportunity to map the development of a newborn quasar.

“It’s surprising that any galaxy can change its look on human time scales. These changes are taking place much more quickly than we can explain with current quasar theory,” Frederick said. “It will take some work to understand what can disrupt a galaxy’s accretion structure and cause these changes on such short order. The forces at play must be very extreme and very dramatic.”

In addition to Frederick and Gezari, UMD-affiliated co-authors of the research paper include Adjunct Associate Professor of Astronomy Bradley Cenko, former Neil Gehrels Prize Postdoctoral Fellow Erin Kara and astronomy graduate student Charlotte Ward.

More information: Sara Frederick et al, A New Class of Changing-look LINERs, The Astrophysical Journal (2019). DOI: 10.3847/1538-4357/ab3a38

Eureka Alert
Headline Image: © (Left; infrared & visible light imagery): ESA/Hubble, NASA and S. Smartt (Queen’s University Belfast); (Right; artist’s concept): NASA/JPL-Caltech

Source link

Continue Reading

Space

Giant black hole at centre of Milky Way exploded ‘recently’ – and blast was felt 200,000 light-years away

THE SUPERMASSIVE black hole at the centre of the Milky Way exploded 3.5million years ago, according to astronomers.

This is considered to be ‘astonishingly recent’ in galactic terms and is changing what scientists thought they knew about our galaxy.

This artist’s impression shows the huge bursts of radiation exploding from the centre of the Milky Way and reaching the Magellanic Stream

Professor Lisa Kewley, who worked on the study, said: “This is a dramatic event that happened a few million years ago in the Milky Way’s history.

“A massive blast of energy and radiation came right out of the galactic centre and into the surrounding material.

“This shows that the centre of the Milky Way is a much more dynamic place than we had previously thought. It is lucky we’re not residing there!”

The cataclysmic blast ripped through our galaxy and was likely felt 200,00 light years away in the Magellanic Stream.

The diameter of the Milky Way itself is thought to be up to 200,000 light years in size

It is considered to be a recent event because when it happened the dinosaurs had already been wiped out for 63million years and human ancestors were already walking on Earth.

This black hole blast phenomenon is known as a Seyfert flare.

The astronomers think it would have created two enormous ‘ionisation cones’ that would have sliced through the Milky Way.

They think it was caused by nuclear activity in the gigantic black hole, known as Sagittarius A.

It is estimated to have lasted for around 300,000 years, which is extremely short in galactic terms.

Co-author Magda Guglielmo from the University of Sydney said: “These results dramatically change our understanding of the Milky Way.

“We always thought about our Galaxy as an inactive galaxy, with a not so bright centre.

“These new results instead open the possibility of a complete reinterpretation of its evolution and nature.

“The flare event that occurred three million years ago was so powerful that it had consequences on the surrounding of our Galaxy.

“We are the witness to the awakening of the sleeping beauty.”

The research was led by by Professor Joss Bland-Hawthorn from Australia’s ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D).

During the study, data was gathered by the Hubble Space Telescope and used to calculate when and how the explosion took place.

It will soon be published in The Astrophysical Journal.

What is a black hole? The key facts

Here’s what you need to know…

What is a black hole?

  • A black hole is a region of space where absolutely nothing can escape
  • That’s because they have extremely strong gravitational effects, which means once something goes into a black hole, it can’t come back out
  • They get their name because even light can’t escape once it’s been sucked in – which is why a black hole is completely dark

What is an event horizon?

  • There has to be a point at which you’re so close to a black hole you can’t escape
  • Otherwise literally everything in the universe would have been sucked into one
  • The point at which you can no longer escape from a black hole’s gravitational pull is called the event horizon
  • The event horizon varies between different black holes, depending on their mass and size

What is a singularity?

  • The gravitational singularity is the very centre of a black hole
  • It’s a one-dimensional point that contains an incredibly large mass in an infinitely small space
  • At the singularity, space-time curves infinitely and the gravitational pull is infinitely strong
  • Conventional laws of physics stop applying at this point

How are black holes created?

  • Most black holes are made when a supergiant star dies
  • This happens when stars run out of fuel – like hydrogen – to burn, causing the star to collapse
  • When this happens, gravity pulls the centre of the star inwards quickly, and collapses into a tiny ball
  • It expands and contracts until one final collapse, causing part of the star to collapse inward thanks to gravity, and the rest of the star to explode outwards
  • The remaining central ball is extremely dense, and if it’s especially dense, you get a black hole

Source newsamed.com

Continue Reading

Space

Something from Saturn photographed by Cassini spacecraft appears in Earth’s atmosphere?

The Cassini–Huygens space-research mission launched aboard a Titan IVB/Centaur on October 15, 1997.

It was active in space for nearly 20 years, with 13 years spent orbiting Saturn and studying the planet and its system after entering orbit on July 1, 2004. The voyage to Saturn included flybys of Venus (April 1998 and July 1999), Earth (August 1999), the asteroid 2685 Masursky, and Jupiter (December 2000). The mission ended on September 15, 2017, when Cassini’s trajectory took it into Saturn’s upper atmosphere and it burned up.

After studying a great portion of its photographs Galactic Hurricane noticed strange anomalies that he couldn’t really defy according to our laws of physics.

Strange spheres seemed to literally stretch within the rings of Saturn. Some did follow the spacecraft and seemed to signal to the Cassini craft. Did we make contact with some kind of lifeform that has yet to be named?

But the strangest thing happened that on September 25, 2019 when Mauricio Lopez filmed exactly the same object above New York what Galactic Hurricane saw on the Cassini’s pictures.

That to me made it clear that something from Saturn could be around or maybe within our Earth’s atmosphere?

Source: UFO Sightings Hotspot

Continue Reading

Trending