Connect with us

Science & Technology

The True Story of a 1967 “Contact” Incident

The story of the SETI discussions during the discovery of pulsars has never been fully told—until now

One of the most significant events for human kind will be the detection of intelligent life elsewhere in the universe. This kind of ‘contact’ is bound to have a profound impact on human culture, society and technology.

The question of how to handle such an event has been widely discussed. Indeed, the international community agreed on a ‘Detection Protocol’ in 1990 that sets out the steps that a research group should take in the event of a contact.

Today, Alan Penny at the University of St Andrews in Scotland tells the story of a real life incident in which the possibility of contact with an intelligent civilisation was seriously considered. Penny draws together various first hand recollections of the event to show how researchers handled the possibility.

The event in question is the 1967 discovery of pulsars, which we now know are rotating neutron stars that produce regular radio pulses. The team that made the discovery was led by Anthony Hewish, who later won a Nobel prize for the work, and famously included Jocelyn Bell Burnell, who did not win the prize.

At the time, the dawn of radio astronomy, the discovery of a source of regular pulses in space was a huge surprise. “We had to face the possibility that the signals were, indeed, generated on a planet circling some distant star, and that they were artificial,” said Hewish later.

The timeline behind the discovery stretches over 6 months or so. In August 1967, Bell noticed regular signals at the same sidereal time each day. Almost immediately, the team considered the possibility that the signals were generated by Little Green Men or LGM as they called it.

In December, the team confirmed the discovery using another telescope and Bell pinpointed the exact position of the source in the sky.

Soon afterwards, she found a second source of signals and by mid-January, a third and fourth source. By this time, the team discounted the possibility that an artificial source could be responsible and eventually settled on neutron stars as the explanation.

In February, the paper announcing the discovery was accepted and published in Nature following a public announcement on 24 February 1968.

Penny says that what’s interesting about this process is that during the discovery process, the team discussed the implications should the signal turn out to be an artificial source, how to verify such a conclusion and how to announce it. They also discussed whether such a discovery might be dangerous.

This process closely follows the Detection Protocol agreed by the international community in 1990.

There’s an interesting corollary to this. The team also discussed the possibility that if it were an artificial source, somebody would want to reply.

Penny points out that the international community has yet to agree on a Reply Protocol because there are widely differing views on whether such a course of action would be beneficial or dangerous for humanity.

This is a situation that needs to be rectified. “The 1967 episode indicates how difficult it would be to construct a policy in the fervid atmosphere of a ‘Contact’,” says Penny.

With SETI searches now focusing on habitable exoplants around other stars, it seems prudent to come to some agreement sooner rather than later.

Ref: arxiv.org/abs/1302.0641: The SETI Episode in the 1967 Discovery of Pulsars

Comments

Science & Technology

Facebook patented hand tracking system

Facebook patented hand tracking with finger emitters.

Facebook Technologies / USPTO, 2020

Facebook has patented a hand tracking system using small transponders at the ends of the fingers. The patent describes a glove with several emitters and a receiving system that distinguishes the signals from each emitter, calculates their location and restores the shape of the hand. The Patently Apple website drew attention to the patent.

Motion capture systems are often used when shooting movies, as well as in virtual reality. There are several standard tracking methods. For professional projects, an external system is often used, which consists of high-speed infrared cameras on the walls and infrared markers on clothes.

This is a rather inconvenient and extremely expensive system, so home VR systems usually use gloves that track the pose of the hand, and a separate massive beacon on the arm that allows the base station near the computer to track its location. Also recently, hand tracking systems using cameras and machine vision algorithms have begun to develop. In particular, at the end of 2019, such a feature appeared in Oculus Quest, which is being developed by a Facebook-owned company.

In a new patent, Facebook engineers described a method for tracking brush poses across multiple emitters. It is assumed that the system will consist of two parts: a glove and a tracking station nearby, for example, on a table near a computer or set-top box. The glove contains several transponders operating on millimeter waves. They can be located at the ends of the fingers, as well as on other parts of the brush for more precise tracking.

System diagram Facebook Technologies / USPTO, 2020

The tracking station has several antennas. They emit signals towards the glove, and transponders emit response signals. After this, the antennas receive response signals, using triangulation, they calculate the location of the transponders and create a three-dimensional model of the brush. The authors note that the signals can be modulated by time, frequency, or changed by other parameters so that they are unique for each transponder and facilitate the task of creating a model.

Glove diagram with transponders Facebook Technologies / USPTO, 2020

In recent years, many miniature emitters for the millimeter radio band have appeared. Most often they are  offered to be used for communication of the 5G standard (mmWave range), as well as in compact radars for smartphones and smart watches.

Continue Reading

Science & Technology

Do Advanced Extraterrestrial Civilizations extract energy from black holes?

Researchers from the School of Physics and Astronomy at the University of Glasgow in the UK have proven a half-century hypothesis that suggests that technologically advanced extraterrestrial civilizations could potentially extract energy from spinning black holes. An article by researchers is published in the journal Nature Physics.

In 1969, the British physicist Roger Penrose suggested that aliens can extract energy from a rotating black hole due to the fact that particles or waves flying through the ergosphere take away the energy of rotation of the black hole (this phenomenon became known as the Penrose process). 

The Soviet physicist Yakov Zeldovich developed this idea and put forward the hypothesis that a rapidly rotating cylinder is capable of amplifying the “swirling” electromagnetic waves incident on it (that is, having a certain orbital angular momentum), including quantum fluctuations in a vacuum. 

However, this effect has not yet been experimentally verified, since the cylinder had to rotate at a frequency of at least a billion times per second.

In a new work, scientists for the first time managed to observe the Zeldovich effect, achieved using acoustic waves with a frequency of 60 hertz. 

During the experiment, the researchers installed 16 speakers in the form of a ring and directed the sound toward a rotating disk made of noise-absorbing foam. In this case, the acoustic waves from one speaker lagged behind in phase from the waves from another speaker, which made it possible to simulate the orbital angular momentum. Conditions satisfying the Zeldovich effect were achieved by rotating the disk with a frequency of only 15-30 revolutions per second.

The experimental results confirmed that low-frequency modes can be amplified by up to 30 percent, passing through the noise-absorbing layer of the disk. As the speed of the disk increases, the frequency of sound waves decreases due to the Doppler effect, however, when a certain speed is reached, it again returns to its previous value, while the volume (i.e. the amplitude) increases. This is due to the fact that the waves took part of the rotational energy from the disk.

The Penrose process occurs when the body has two parts, one of which falls beyond the horizon of events. If two fragments have certain speeds, a special position relative to each other and fly along the correct paths, then the fall of one fragment transfers the energy to the other part, greater than the energy that the body had originally.

 For an outside observer, it looks as if the body was divided into a part with positive energy and a part with “negative energy”, which when falling beyond the horizon reduces the angular momentum of the black hole. As a result, the first fragment takes off from the ergosphere, “taking” the energy of rotation of the black hole.

Continue Reading

Science & Technology

What if we could create antigravitу?

Are уou tired of cramped citу life? Then anti-gravitу is just what уou need! We still don’t know the technologу, but if we do, it will completelу change our world.

How can this change the waу we build our cities? Whу would this allow us to travel further into space? And how can this help us colonize alien worlds?

According to astronomers, gravitу is “the force bу which a planet or other bodу pulls objects to its center. We reallу don’t know whу gravitу behaves like this; we just know that this is so, and that’s all we need for this.

As we talk about things that we know too little about, let’s get to know her better. Antigravitу, as the name implies, is a hуpothetical means of counteracting the effects of gravitу.

Although manу scholars saу this is not possible, this does not stop us from reasoning. But if we ever find out, we will have to delve into an even more mуsterious part of our universe – antimatter.

To understand what antimatter is and how it relates to antigravitу, we will go back during the Big Bang. When the Big Bang occurred, he created matter and antimatter. Matter consists of atoms – the building blocks of chemical elements such as helium, oxуgen and hуdrogen.

Inside the atoms уou will find particles, such as protons, which have a positive electric charge, and electrons, which usuallу have a negative charge. For antimatter, the electric charge of these particles is reversed.

This led to some speculations that other properties will also be changed, such as how theу react to gravitу. We could not verifу how antimatter reacts to gravitу – for now. However, some theories saу that when we do this, we will find that antimatter particles do not fall, giving us our first real example of antigravitу.

If so, this could lead to a scientific and technological revolution. We could theoreticallу use antimatter to develop technologу that protects people or objects from gravitational forces. In other words, we can make so manу things float in the air.

So what would we do with this crazу technologу? Well, firstlу, there should be hoverboards, right? We’re talking about real hoverboards that don’t touch the ground!

We could build floating cities to accommodate our ever-growing population. Massive structures can be suspended over ponds or rockу terrain that we could not build. But perhaps we will see the greatest importance of anti-gravitу technologу, if we look even further – at the stars.

Space travel will be much safer and cheaper. Space shuttles will not need rocket fuel to launch from our atmosphere. Instead, we could just stop the effects of gravitу on them.

Antigravitу will not onlу help us get to space; It can also help us find a new home there. We no longer need to worrу about planets with gravitу too strong for human habitation, since we can simplу use antigravitу to protect ourselves from it.

Yes, we understand that there is a lot of unknown and hуpothetical with this, but here’s what happens when we talk about something as mуsterious as antimatter.

Continue Reading
Advertisement

DO NOT MISS

Trending