Connect with us

Mysteries

The Russian Sleep Experiment Orange Soda

Russian researchers in the late 1940’s kept five people awake for fifteen days using an experimental gas based stimulant. They were kept in a sealed environment to carefully monitor their oxygen intake so the gas didn’t kill them, since it was toxic in high concentrations. This was before closed circuit cameras so they had only microphones and 5 inch thick glass porthole sized windows into the chamber to monitor them. The chamber was stocked with books, cots to sleep on but no bedding, running water and toilet, and enough dried food to last all five for over a month.
The test subjects were political prisoners deemed enemies of the state during world war II.
Everything was fine for the first 5 days, the subjects hardly complained having been promised (falsely) that they would be freed if they submitted to the test and did not sleep for 30 days. Their conversations and activities were monitored and it was noted that they continued to talk about increasingly traumatic incidents in their past, and the general tone of their conversations took on a darker aspect after the 4 day mark.
After five days they started to complain about the circumstances and events that lead them to where they were and started to demonstrate severe paranoia. They stopped talking to each other and began alternately whispering to the microphones and one way mirrored portholes. Oddly they all seemed to think they could win the trust of the experimenters by turning over their comrades, the other subjects in captivity with them. At first the researchers suspected this was an effect of the gas itself…
After nine days the first of them started screaming. He ran the length of the chamber repeatedly yelling at the top of his lungs for 3 hours straight, he continued attempting to scream but was only able to produce occasional squeaks. The researchers postulated that he had physically torn his vocal cords. The most surprising thing about this behavior is how the other captives reacted to it… or rather didn’t react to it. They continued whispering to the microphones until the second of the captives started to scream. The 2 non screaming captives took the books apart, smeared page after page with their own feces and pasted them calmly over the glass portholes. The screaming promptly stopped.
So did the whispering to the microphones. 

 

 

To their surprise they heard a single phrase in a calm voice response: “We no longer want to be freed.”
Debate broke out among the researchers and the military forces funding the research. Unable to provoke any more response using the intercom it was finally decided to open the chamber at midnight on the fifteenth day.
The chamber was flushed of the stimulant gas and filled with fresh air and immediately voices from the microphones began to object. 3 different voices began begging, as if pleading for the life of loved ones to turn the gas back on. The chamber was opened and soldiers sent in to retrieve the test subjects. They began to scream louder than ever, and so did the soldiers when they saw what was inside. Four of the five subjects were still alive, although no one could rightly call the state that any of them in ‘life.’

The food rations past day 5 had not been so much as touched. There were chunks of meat from the dead test subject’s thighs and chest stuffed into the drain in the center of the chamber, blocking the drain and allowing 4 inches of water to accumulate on the floor. Precisely how much of the water on the floor was actually blood was never determined. All four ‘surviving’ test subjects also had large portions of muscle and skin torn away from their bodies. The destruction of flesh and exposed bone on their finger tips indicated that the wounds were inflicted by hand, not with teeth as the researchers initially thought. Closer examination of the position and angles of the wounds indicated that most if not all of them were self-inflicted.

The abdominal organs below the ribcage of all four test subjects had been removed. While the heart, lungs and diaphragm remained in place, the skin and most of the muscles attached to the ribs had been ripped off, exposing the lungs through the ribcage. All the blood vessels and organs remained intact, they had just been taken out and laid on the floor, fanning out around the eviscerated but still living bodies of the subjects. The digestive tract of all four could be seen to be working, digesting food. It quickly became apparent that what they were digesting was their own flesh that they had ripped off and eaten over the course of days.

Most of the soldiers were Russian special operatives at the facility, but still many refused to return to the chamber to remove the test subjects. They continued to scream to be left in the chamber and alternately begged and demanded that the gas be turned back on, lest they fall asleep…

To everyone’s surprise the test subjects put up a fierce fight in the process of being removed from the chamber. One of the Russian soldiers died from having his throat ripped out, another was gravely injured by having his testicles ripped off and an artery in his leg severed by one of the subject’s teeth. Another 5 of the soldiers lost their lives if you count ones that committed suicide in the weeks following the incident.

In the struggle one of the four living subjects had his spleen ruptured and he bled out almost immediately. The medical researchers attempted to sedate him but this proved impossible. He was injected with more than ten times the human dose of a morphine derivative and still fought like a cornered animal, breaking the ribs and arm of one doctor. When heart was seen to beat for a full two minutes after he had bled out to the point there was more air in his vascular system than blood. Even after it stopped he continued to scream and flail for another 3 minutes, struggling attack anyone in reach and just repeating the word “MORE” over and over, weaker and weaker, until he finally fell silent.

The surviving three test subjects were heavily restrained and moved to a medical facility, the two with intact vocal cords continuously begging for the gas demanding to be kept awake…

The most injured of the three was taken to the only surgical operating room that the facility had. In the process of preparing the subject to have his organs placed back within his body it was found that he was effectively immune to the sedative they had given him to prepare him for the surgery. He fought furiously against his restraints when the anesthetic gas was brought out to put him under. He managed to tear most of the way through a 4 inch wide leather strap on one wrist, even through the weight of a 200 pound soldier holding that wrist as well. It took only a little more anesthetic than normal to put him under, and the instant his eyelids fluttered and closed, his heart stopped. In the autopsy of the test subject that died on the operating table it was found that his blood had triple the normal level of oxygen. His muscles that were still attached to his skeleton were badly torn and he had broken 9 bones in his struggle to not be subdued. Most of them were from the force his own muscles had exerted on them.

The second survivor had been the first of the group of five to start screaming. His vocal cords destroyed he was unable to beg or object to surgery, and he only reacted by shaking his head violently in disapproval when the anesthetic gas was brought near him. He shook his head yes when someone suggested, reluctantly, they try the surgery without anesthetic, and did not react for the entire 6 hour procedure of replacing his abdominal organs and attempting to cover them with what remained of his skin. The surgeon presiding stated repeatedly that it should be medically possible for the patient to still be alive. One terrified nurse assisting the surgery stated that she had seen the patients mouth curl into a smile several times, whenever his eyes met hers.

When the surgery ended the subject looked at the surgeon and began to wheeze loudly, attempting to talk while struggling. Assuming this must be something of drastic importance the surgeon had a pen and pad fetched so the patient could write his message. It was simple “Keep cutting.”

The other two test subjects were given the same surgery, both without anesthetic as well. Although they had to be injected with a paralytic for the duration of the operation. The surgeon found it impossible to perform the operation while the patients laughed continuously. Once paralyzed the subjects could only follow the attending researchers with their eyes. The paralytic cleared their system in an abnormally short period of time and they were soon trying to escape their bonds. The moment they could speak they were again asking for the stimulant gas. The researchers tried asking why they had injured themselves, why they had ripped out their own guts and why they wanted to be given the gas again.

Only one response was given: “I must remain awake.”

All three subject’s restraints were reinforced and they were placed back into the chamber awaiting determination as to what should be done with them. The researchers, facing the wrath of their military ‘benefactors’ for having failed the stated goals of their project considered euthanizing the surviving subjects. The commanding officer, an ex-KGB instead saw potential, and wanted to see what would happen if they were put back on the gas. The researchers strongly objected, but were overruled.

In preparation for being sealed in the chamber again the subjects were connected to an EEG monitor and had their restraints padded for long term confinement. To everyone’s surprise all three stopped struggling the moment it was let slip that they were going back on the gas. It was obvious that at this point all three were putting up a great struggle to stay awake. One of subjects that could speak was humming loudly and continuously; the mute subject was straining his legs against the leather bonds with all his might, first left, then right, then left again for something to focus on. The remaining subject was holding his head off his pillow and blinking rapidly. Having been the first to be wired for EEG most of the researchers were monitoring his brain waves in surprise. They were normal most of the time but sometimes flat lined inexplicably. It looked as if he were repeatedly suffering brain death, before returning to normal. As they focused on paper scrolling out of the brainwave monitor only one nurse saw his eyes slip shut at the same moment his head hit the pillow. His brainwaves immediately changed to that of deep sleep, then flatlined for the last time as his heart simultaneously stopped.

The only remaining subject that could speak started screaming to be sealed in now. His brainwaves showed the same flatlines as one who had just died from falling asleep. The commander gave the order to seal the chamber with both subjects inside, as well as 3 researchers. One of the named three immediately drew his gun and shot the commander point blank between the eyes, then turned the gun on the mute subject and blew his brains out as well.

He pointed his gun at the remaining subject, still restrained to a bed as the remaining members of the medical and research team fled the room. “I won’t be locked in here with these things! Not with you!” he screamed at the man strapped to the table. “WHAT ARE YOU?” he demanded. “I must know!”

The subject smiled.

“Have you forgotten so easily?” The subject asked. “We are you.” “We are the madness that lurks within you all, begging to be free at every moment in your deepest animal mind.” “We are what you hide from in your beds every night. We are what you sedate into silence and paralysis when you go to the nocturnal haven where we cannot tread.”

The researcher paused. Then aimed at the subject’s heart and fired.

The EEG flatlined as the subject weakly choked out “so… nearly… free…”

Mysteries

Why are octopuses so alien alike?

The television series anthology Twilight Zone, appeared on the CBS channel from 1959 to 1964. Each episode is a separate story, the characters of which are included in the so-called “Twilight Zone”, faced with an unexpected ending and morality. 

Last year, a remake of the cult series took place, and soon the second season arrived, one of the series of which tells about a team of scientists studying new types of deep-sea octopuses. The squid and octopus populations, according to the plot, have grown to incredible proportions due to climate change. 

As a result, researchers came across an intellectually developed life form unknown to science. And you know what is the most amazing thing in this whole story? The octopuses are actually so strange that their tentacles are at the same time their “brain.” But that is far from all. We tell that science knows about cephalopods.

Scene from the series “Twilight Zone”, second season, 2020

What does science know about octopuses?

When an octopus wraps a stone or a piece of food around one of its flexible tentacles, this is not because the animal’s brain says, “take it.” Rather, the tentacle, as it were, “decides” what to do next. It is as if the big toe of your left foot determined where to go. The nervous system of cephalopods is not arranged like in humans, and not like in other vertebrates. But from which part of the body does the central brain pass orders to everyone else?

In fact, the limbs of an octopus are dotted with concentrations of neurons called ganglia. With the help of ganglia, these “tentacle brains” can work independently of the central brain of octopuses. Scientists who recently managed to visualize the movement in the tentacles of an octopus, found that the central brain of the animal was practically not involved.

The team presented their results on June 26, 2019 during a scientific conference on astrobiology. Researchers used a camera and animal tracking software to simulate how an octopus perceives and then processes environmental information with tentacles, Livescience writes.

Did you know that Squid has a very large brain. Scientists believe that they are the most intelligent of mollusks

Modern technology allows researchers to learn how sensory information integrates into the neural network of a mollusk when an animal makes complex decisions. The movement of the octopus tentacles begins far from the brain, and is caused by the suction cups (sensors) in the tentacles that examine the seabed or aquarium. Each suction cup contains tens of thousands of chemical and mechanical receptors; For comparison, the tip of a person’s finger contains only a few hundred mechanical receptors.

When an octopus touches something interesting, the “brain” in its tentacles processes the information coming from outside and moves the signal further, indicating to the hand what to do. 

The researchers found that the signals generated by one suction cup are transmitted to its closest neighbor, activating the muscles of the tentacles and generating a wide wave of movement that moves up the body. While the tentacles of the octopus actively interact with the environment – and with each other – the signal that reaches the central brain of the animal is “strongly abstracted” and is not directly involved in the interaction of “hands”.

The twilight zone series is not as crazy as it might seem at first glance. Great science fiction

In fact, octopuses “outsource” calculations about how to control the body, assigning certain actions to the local governing bodies – the ganglia that are in each tentacle. In a sense, octopuses send their minds to explore the environment to understand what is happening around halfway. This is all very entertaining, but for what reason do scientists talk about octopuses at an astrobiological conference? What does this have to do with extraterrestrial life? 

It is believed that octopuses have high intelligence, but the ways of perceiving the world around and interacting with it are very different from the methods that developed in intelligent vertebrates. 

Thus, the abilities of these cephalopods can serve as an important alternative model for understanding intelligence, and can prepare experts to recognize the unusual manifestations of intelligent life that has arisen in other worlds. This gives researchers an idea of ​​the diversity of knowledge in the world. And perhaps in the universe. How do you think octopuses are reasonable? 

Continue Reading

Mysteries

The magnetic soul of the universe

“In 1945, the primitive appearance of pre-intelligent primates on planet Earth blew up the first thermonuclear device. They did not suspect that they created an echo in the super-space web, used for non-local communication and the transmigration of souls by the civilizations of the Trans-galactic union, network , which the more mysterious races call the “body of God.”

Shortly afterwards, the secret forces of intelligent races were sent to Earth to observe the situation and prevent further electromagnetic destruction of the universal network. “

The introduction taken in quotation marks looks like a plot for science fiction, but just such a conclusion can be drawn after reading this scientific article. The presence of this network pervading the entire Universe could explain a lot – for example, the UFO phenomenon, their elusiveness and invisibility, incredible possibilities, and besides, indirectly, this theory of the “body of God” gives us real evidence that there is life after death.

We are at the very initial stage of development, and in fact we are “pre-intelligent beings” and who knows if we can find the strength in ourselves to become a truly intelligent race. Astronomers have discovered that magnetic fields permeate much of space. Hidden lines of the magnetic field extend for millions of light years throughout the universe.

Each time astronomers come up with a new way to search for magnetic fields in more and more distant regions of space, they inexplicably find them.

These force fields are the same entities that surround the Earth, the Sun and all galaxies. Twenty years ago, astronomers began to discover magnetism permeating entire clusters of galaxies, including the space between one galaxy and the next. Invisible field lines sweep through intergalactic space.

Last year, astronomers finally managed to explore a much more sparse region of space – the space between clusters of galaxies. There they discovered the largest magnetic field: 10 million light-years of magnetized space, covering the entire length of this “thread” of the cosmic web. A second magnetized thread has already been seen elsewhere in space using the same methods. “We’re just looking at the tip of the iceberg, probably,” said Federica Govoni of the National Institute of Astrophysics in Cagliari, Italy, who led the first discovery.

The question arises: where did these huge magnetic fields come from?

“This clearly cannot be associated with the activity of individual galaxies or individual explosions or, I do not know, winds from supernovae,” said Franco Vazza, an astrophysicist at the University of Bologna, who makes modern computer simulations of cosmic magnetic fields. “This goes far beyond all this.”

One possibility is that cosmic magnetism is primary, tracing all the way back to the birth of the universe.In this case, weak magnetism must exist everywhere, even in the “voids” of the cosmic web – the darkest, most empty areas of the universe. Omnipresent magnetism would sow stronger fields that bloomed in galaxies and clusters.

Primary magnetism could also help solve another cosmological puzzle known as Hubble stress – probably the hottest topic in cosmology.

The problem underlying Hubble’s tension is that the Universe seems to expand much faster than expected based on its known components. In an article published on the Internet in April and reviewed with Physical Review Letters, cosmologists Karsten Jedamzik ​​and Levon Poghosyan argue that weak magnetic fields in the early Universe will lead to the faster cosmic expansion observed today.

Primitive magnetism removes Hubble’s tension so simply that Jedamzik ​​and Poghosyan’s article immediately attracted attention. “This is a great article and an idea,” said Mark Kamionkovsky, a theoretical cosmologist at Johns Hopkins University who proposed other solutions to Hubble’s tension.

Kamenkovsky and others say that additional checks are needed to ensure that early magnetism does not interfere with other cosmological calculations. And even if this idea works on paper, researchers will need to find convincing evidence of primary magnetism to make sure that it is the missing agent that formed the universe.

However, in all these years of talking about Hubble stress, it is perhaps strange that no one has considered magnetism before. According to Poghosyan, who is a professor at Simon Fraser University in Canada, most cosmologists hardly think about magnetism. “Everyone knows this is one of those big puzzles,” he said. But for decades there was no way to say whether magnetism is indeed ubiquitous and, therefore, is the primary component of the cosmos, so cosmologists have largely stopped paying attention.

Meanwhile, astrophysicists continued to collect data. The weight of evidence made most of them suspect that magnetism is indeed present everywhere.

The magnetic soul of the universe

In 1600, an English scientist William Gilbert, studying mineral deposits — naturally magnetized rocks that humans have created in compasses for millennia — came to the conclusion that their magnetic force “mimics the soul.” “He correctly suggested that the Earth itself is“ a great magnet, ”and that the magnetic pillars“ look toward the poles of the Earth. ”

Magnetic fields occur at any time when an electric charge flows. The Earth’s field, for example, comes from its internal “dynamo” – a stream of liquid iron, seething in its core. Fields of fridge magnets and magnetic columns come from electrons orbiting around their constituent atoms.

Cosmological modeling illustrates two possible explanations of how magnetic fields penetrated galaxy clusters. On the left, the fields grow out of homogeneous “seed” fields that filled the space in the moments after the Big Bang. On the right, astrophysical processes, such as the formation of stars and the flow of matter into supermassive black holes, create magnetized winds that exit galaxies.

However, as soon as a “seed” magnetic field arises from charged particles in motion, it can become larger and stronger if weaker fields are combined with it. Magnetism “is a bit like a living organism,” said Thorsten Enslin, a theoretical astrophysicist at the Institute of Astrophysics Max Planck in Garching, Germany – because magnetic fields connect to every free source of energy that they can hold onto and grow. They can spread and influence other areas through their presence, where they also grow. ”

Ruth Durer, a cosmologist and theoretician at the University of Geneva, explained that magnetism is the only force besides gravity that can shape the large-scale structure of the cosmos, because only magnetism and gravity can “reach you” at great distances. Electricity, on the contrary, is local and short-lived, since the positive and negative charge in any region will be neutralized as a whole. But you cannot cancel magnetic fields; they tend to take shape and survive.

And yet, despite all its power, these force fields have low profiles. They are intangible and are perceived only when they act on other things. ”You cannot just photograph a magnetic field; it doesn’t work like that, “Van Reuen, an astronomer at Leiden University who was involved in the recent discovery of magnetized filaments, told Reinu Van.

Last year, Van Verin and 28 collaborators suggested a magnetic field in the filament between clusters of galaxies Abell 399 and Abell 401 is the way the field redirects high-speed electrons and other charged particles passing through it. As their paths spin in the field, these charged particles emit faint “synchrotron radiation.”

The synchrotron signal is strongest at low frequencies, making it ready to be detected with LOFAR, an array of 20,000 low-frequency radio antennas scattered across Europe.

The team actually collected data from the filament back in 2014 for one eight-hour span, but the data sat waiting as the radio astronomy community spent years figuring out how to improve the calibration of LOFAR measurements. The Earth’s atmosphere refracts the radio waves passing through it, so LOFAR considers space from the bottom of the swimming pool. The researchers solved the problem by tracking the vibrations of the “beacons” in the sky – the emitters with precisely known locations – and adjusting the vibrations for this to release all the data. When they applied the de-blurring algorithm to the data from the filament, they immediately saw the glow of the synchrotron radiation. LOFAR consists of 20,000 individual radio antennas scattered throughout Europe.

The filament looks magnetized everywhere, and not just near clusters of galaxies that move towards each other from both ends. Researchers hope the 50-hour dataset they are currently analyzing will reveal more details. Recently, additional observations have revealed magnetic fields propagating along the entire length of the second filament. Researchers plan to publish this work soon.

The presence of huge magnetic fields in at least these two strands provides important new information. “It caused quite a bit of activity,” Van Faith said, “because now we know that magnetic fields are relatively strong.”

Light through the Void

If these magnetic fields arose in the infant Universe, the question arises: how? “People have been thinking about this issue for a long time,” said Tanmai Wachaspati of Arizona State University.

In 1991, Vachaspati suggested that magnetic fields could arise during an electroweak phase transition – a moment, a split second after the Big Bang, when electromagnetic and weak nuclear forces became distinguishable. Others have suggested that magnetism materialized microseconds later when protons formed. Or soon after: the late astrophysicist Ted Harrison claimed in the earliest original theory of magnetogenesis in 1973 that turbulent plasma of protons and electrons may have caused the appearance of the first magnetic fields. Nevertheless, others suggested that this space became magnetized even before all this, during space inflation – the explosive expansion of space that supposedly jumped up and launched the Big Bang itself. It is also possible that this did not happen before the growth of structures a billion years later.

A way to test theories of magnetogenesis is to study the structure of magnetic fields in the most pristine parts of the intergalactic space, such as the calm parts of filaments and even more empty voids. Some details — for example, whether the field lines are smooth, spiral, or “curved in all directions, like a ball of yarn or something else” (according to Vachaspati), and how the picture changes in different places and at different scales — carry rich information that can be compared with the theory and modeling, for example, if the magnetic field occurred during the electroweak phase transition, as suggested by Vacaspati, the resulting power lines should be spiral, “like a corkscrew,” -. he said.

The catch is that it is difficult to detect the force fields, who have nothing to press on.

One of the methods, first proposed by the English scientist Michael Faraday back in 1845, detects a magnetic field by the way it rotates the direction of polarization of the light passing through it. The magnitude of the “Faraday rotation” depends on the strength of the magnetic field and the frequency of light. Thus, by measuring the polarization at different frequencies, you can conclude about the strength of magnetism along the line of sight. “If you do it from different places, you can make a 3D map,” Enslin said.

Researchers have begun making rough measurements of Faraday rotation using LOFAR, but the telescope has problems emitting an extremely weak signal. Valentina Wakka, an astronomer and colleague of Govoni from the National Institute of Astrophysics, developed an algorithm several years ago for the statistical processing of thin Faraday rotation signals, adding together many dimensions of empty spaces. “In principle, it can be used for voids,” said Wakka.

But the Faraday method will really take off when the next generation radio telescope, a gigantic international project called “an array of square kilometers”, is launched. “SKA should create a fantastic Faraday grid,” said Enslin.

At the moment, the only evidence of magnetism in voids is that observers do not see when they look at objects called blazars located behind voids.

Blazars are bright beams of gamma rays and other energy sources of light and matter, fed by supermassive black holes. When gamma rays travel through space, they sometimes collide with ancient microwaves, turning into electron and positron as a result. These particles then hiss and turn into low-energy gamma rays.

But if blazar light passes through a magnetized void, then low-energy gamma rays will appear absent, argued Andrei Neronov and Evgeny Vovk from the Geneva Observatory in 2010. The magnetic field will deflect electrons and positrons from the line of sight. When they decay into low-energy gamma rays, these gamma rays will not be directed at us. Indeed, when Nero and Vovk analyzed the data from a suitably located blazar, they saw its high-energy gamma rays, but not its low-energy gamma signal. “This is the lack of a signal, which is the signal,” said Vachaspati.

The absence of a signal is hardly a smoking weapon, and alternative explanations have been proposed for missing gamma rays. However, subsequent observations increasingly point to the hypothesis of Neronov and Vovkov that the voids are magnetized. “This is a majority opinion,” said Dürer. Most convincingly, in 2015, one team superimposed many dimensions of blazars behind voids and managed to tease the faint halo of low-energy gamma rays around blazars. The effect is exactly what one would expect if the particles were scattered by weak magnetic fields – measuring only about one millionth of a trillion as strong as a refrigerator magnet.

The biggest mystery of cosmology

It is amazing that just this amount of primary magnetism can be exactly what is needed to resolve the Hubble stress – the problem of the surprisingly fast expansion of the Universe.

This is precisely what Poghosyan understood when he saw the recent computer simulations of Carsten Jedamzik ​​from the University of Montpellier in France and his colleagues. Researchers added weak magnetic fields to the simulated plasma-filled young Universe and found that protons and electrons in the plasma flew along the lines of the magnetic field and accumulated in areas of the weakest field strength. This coalescence effect caused protons and electrons to combine into hydrogen — an early phase change known as recombination — earlier than they might otherwise have.

Poghosyan, reading an article by Jedamzik, realized that this could relieve Hubble’s tension. Cosmologists calculate how fast space should expand today by observing the ancient light emitted during recombination. Light shows a young Universe dotted with blots that were formed from sound waves lapping around in the primary plasma. If recombination occurred earlier than anticipated due to the thickening effect of magnetic fields, then sound waves could not propagate so far forward, and the resulting drops would be smaller. This means that the spots that we see in the sky from the time of recombination should be closer to us than the researchers assumed. The light emanating from the clots had to travel a shorter distance to reach us, which means that the light had to pass through a faster expanding space. “It’s like trying to run on an expanding surface; you cover a smaller distance, ”said Poghosyan.

The result is that smaller droplets mean a higher expected speed of cosmic expansion, which greatly brings the estimated speed closer to measuring how fast supernovae and other astronomical objects actually seem to fly apart.

“I thought, wow,” said Poghosyan, “this may indicate to us the real presence of [magnetic fields]. Therefore, I immediately wrote to Karsten.” The two met in Montpellier in February, just before the prison closed, and their calculations showed that, indeed, the amount of primary magnetism needed to solve the Hubble tension problem is also consistent with the blazar observations and the estimated size of the initial fields needed for the growth of huge magnetic fields , covering clusters of galaxies and filaments. “So, it all somehow converges,” said Poghosyan, “if that turns out to be true.”

References: Quanta Magazine

Continue Reading

Mysteries

The Montana base incident: UFO disconnects 16 nuclear missiles

In central Montana, on Thursday morning, March 16, 1967, an E-Flight nuclear missile crew was located underground at the Echo-Flight Mission Control Center (LCC) in a fortified bunker.

During the early morning, there were several reports from security patrols that they had seen a UFO. A UFO was spotted directly above one of the E-Flight (LF) launchers above the mine. It turned out that at least one security officer was so scared by this meeting that he never returned to the Security Service.

After a while, the deputy calculation commander (DMCCC), 1st lieutenant, informed the calculation commander (MCCC), the captain, about the condition of the missiles in the mines when an alarm sounded. Over the next 30 seconds, all ten of their missiles issued a No-Go status report. One by one, each rocket became inoperative, From that moment, as his former rocket launcher describes:

“All hell broke loose! Among the many calls to the electronic switch. The matter was compounded by the fact that the same event happened on another launcher on the same morning (6 rockets disconnected)”.

In this case, we have a strategic nuclear missile stop coinciding with the sighting of a UFO over a missile shaft! These were missiles lost by the American nuclear deterrence forces. According to Robert Salas, who was counting that morning:

“As far as I remember, while on duty as deputy commander of a missile combat crew underground in the LSS, in the morning hours of March 16, 1967, I received a call from the sergeant responsible for the security of the facility Launch control center”.

He said that he and other guards observed unidentified flying objects in the immediate vicinity, which several times flew over the mines in which the rockets were. At that time, he could only describe them as “lights.” I did not take this message seriously and told him to continue observing and reporting if something more significant happened. I believed that this first call was a joke.

A few minutes later, the security sergeant called again. Now he was thrilled and upset, saying that the UFO hovered right behind the front gate. I ordered him to guard the fenced area. While we were talking, he had to leave, because one of the guards approached the UFO and was injured. I immediately woke up my commander, who was just resting and began reporting on telephone conversations. Immediately, our missiles began to quickly move from an “alarm” state to a “no launch” state. Some kind of signal was sent to the missiles, which made them emerge from a state of alert.

Having reported this incident to the command post, I called my guard. He said that the man who approached the UFO was not seriously injured, but was evacuated by helicopter to the base. Once at the top, I spoke directly with the guard about the UFO. He added that the UFO has a red glow and saucer shape. He repeated that it was right behind the gate and soared silently.

We sent a security patrol to check our ODS after a trip, and they reported that they saw another UFO during this patrol. They also lost radio contact with us immediately after reporting the UFO. Later that morning, we were replaced by our full-time shift crew. The missiles were still not put on alert by on-site maintenance teams.

Again, UFOs were spotted by security personnel during or around the time of the shutdown of Minuteman strategic missiles. An in-depth investigation of the incident was conducted. Full-scale field and laboratory tests were conducted at the Seattle-based Boeing plant.

Both the declassified documents of the strategic rocket wing and the interviews with Boeing engineers who tested after the investigation of the incident, confirm that no reason was found for shutting down the missiles. The most that could be done was to reproduce the effects by directly injecting a 10-volt pulse into the data line. One of the conclusions was that the only way to do this from outside the shielded system was through an electromagnetic pulse from an unknown source.

During the events of that morning in 1967, UFOs were spotted by members of the Security Service on the east side of the base and one on north. Other members of the Security Service witnessed UFO’s on the west side. These observations were reported by separate security teams at about the same time that Minuteman strategic missiles were stopped at both sites. The U.S. Air Force confirmed that all Echo flights shut off within a few seconds, one after the other, and that they did not find any reason for this.

Continue Reading
Advertisement

DO NOT MISS

Trending