Connect with us

Science & Technology

The Evidence Against Aspirin And For Natural Alternatives

Sayer Ji

As far back as the 5th century BC the Greek physician Hippocrates wrote about the use of a bitter powder extracted from willow bark that reduced fevers and eased aches and pains. Native Americans also used an infusion of willow bark for similar purposes. What was this remarkable “healing” principle within the bark that relieved disease?

Known as salicylic acid (from the Latin salix, willow tree), this pain-killing compound is widely distributed throughout plants, where it functions as a hormone. The more vegetables and fruits you consume, the more likely you are to have a physiologically significant concentration of salicylic acid in your blood. This is why, for instance, vegans and vegetarians generally have higher levels than most grain- and meat-based consumers. [1]

The chemical acetyl-salicylic acid, commonly known as aspirin, is a synthetic form of salicylic acid, a compound which is formed when salicin, a bitter compound naturally found within plants like white willow bark, is broken down within the human body. Salicylic acid can also be synthesized endogenously from benzoic acid, and its urinary metabolite, salicyluric acid, has been found to overlap levels in patients on low-dose aspirin regimens. Cell research indicates that salicylic acid compounds (known as salicyclates) actually compare surprisingly well to aspirin in reducing inflammatory activity.[2]

While salicylic acid is found naturally in plants as salicylates, acetyl-salicylic acid does not exist in nature, is not formed as byproduct of natural salicylate consumption,[3] and is produced only through industrial synthesis. For example, this is one method of synthesis:

Acetylsalicylic acid is prepared by reacting acetic anhydride with salicylic acid at a temperature of <90 deg C either in a solvent (e.g., acetic acid or aromatic, acyclic, or chlorinated hydrocarbons) or by the addition of catalysts such as acids or tertiary amines.[4]

Also, the chemical modification of natural salicylic acid with an acetyl group results in the acetylation of hemoglobin,[5] essentially chemically altering the natural structure-function of our red blood cells and subsequent hemodynamics. In essence, aspirin, a semi-synthetic compound, makes the blood tissue itself semi-synthetic.

This could be why aspirin has been linked to such a broad range of unintended adverse health effects, including but not limited to:

We have a section on our database dedicated to indexing the under-reported, unintended adverse effects of aspirin, related to 50 diseases which can be viewed here: Aspirin Side Effects. We also have a section which indexes research on natural compounds studied to prevent, reduce or reverse Aspirin-Induced Toxicity.

According to US EPA statistics, up to 500 thousand pounds of the chemical was produced in the United States in 1998 alone.[17] Millions the world over take it for pain relief, including your typical headache, but also for the prevention of heart attacks and stroke.

Taking a “baby aspirin,” i.e. an 81 mg dose, is considered safer — which it is relative to a 325 mg “adult dose” – but is known to cause widespread and significant gastroduodenal damage. A study published in 2009 in the journal Currrent Medical Research & Opinion titled, “Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs,” found the following:

Data suggest that ASA causes significant gastroduodenal damage even at the low doses used for cardiovascular protection. These effects (both systemic and possibly local) may be pharmacodynamically distinct from the gastroduodenal toxicity seen with NSAIDs.[18]

Another 2009 study found that 80% of healthy individuals who uses short-term (14 days), low-dose aspirin experienced small intestinal toxicity, including small bowel mucosal breaks and mucosal inflammation. [19] Also, there are reports of esophageal mucosal lesions induced by low-dose aspirin and other antiplatelet medications mimicking esophageal malignancy.[20]

Data suggest that ASA [aspirin]causes significant gastroduodenal damage even at the low doses used for cardiovascular protection. These effects (both systemic and possibly local) may be pharmacodynamically distinct from the gastroduodenal toxicity seen with NSAIDs.[21]

Hemorrhagic side effects, in fact, are one of the greatest challenges facing those who use aspirin for prevention. By taking a drug which prevents clotting, aspirin can work too well, resulting in bleeding disorders or events, some of which may be life-threatening, even lethal.

So, given the serious, unintended adverse health effects of aspirin therapy, what are some evidence-based natural alternatives?

Researched aspirin alternatives include:

  • Pycnogenol: A human study published in 1999 in the journal Thrombotic Research found that pycnogenol was superior (i.e. effective at a lower dosage) to aspirin at inhibiting smoking-induced clotting, without the significant (and potentially life-threatening) increase in bleeding time associated with aspirin use.[22] The abstract is well worth reading in its entirety:

The effects of a bioflavonoid mixture, Pycnogenol, were assessed on platelet function in humans. Cigarette smoking increased heart rate and blood pressure. These increases were not influenced by oral consumption of Pycnogenol or Aspirin just before smoking. However, increased platelet reactivity yielding aggregation 2 hours after smoking was prevented by 500 mg Aspirin or 100 mg Pycnogenol in 22 German heavy smokers. In a group of 16 American smokers, blood pressure increased after smoking. It was unchanged after intake of 500 mg Aspirin or 125 mg Pycnogenol. In another group of 19 American smokers, increased platelet aggregation was more significantly reduced by 200 than either 150 mg or 100 mg Pycnogenol supplementation. This study showed that a single, high dose, 200 mg Pycnogenol, remained effective for over 6 days against smoking-induced platelet aggregation. Smoking increased platelet aggregation that was prevented after administration of 500 mg Aspirin and 125 mg Pycnogenol. Thus, smoking-induced enhanced platelet aggregation was inhibited by 500 mg Aspirin as well as by a lower range of 100-125 mg Pycnogenol. Aspirin significantly (p<0.001) increased bleeding time from 167 to 236 seconds while Pycnogenol did not.These observations suggest an advantageous risk-benefit ratio for Pycnogenol.” [emphasis added]

Pycnogenol also has about as many “side benefits” as aspirin has side effects. You can view them on our pycnogenol research page.

  • Policosanol: Already well-known for its ability to modulate blood cholesterol levels as effectively as statins, but without their notorious side effects, this sugar cane wax extract has been found to be as effective as aspirin at inhibiting clotting, but at a lower, safer dose.[23]

There are actually a broad range of natural compounds, including foods and spices, with demonstrable platelet-inhibiting activity. You will find a list of them on our natural platelet inhibitor pharmacological actions page. Another highly relevant section on our website is the Thrombosis Research page.

Ultimately, however, cardiovascular disease and heart attacks, for instance, are not caused by a lack of aspirin. To explore further the research related to preventing and treating heart disease naturally, visit our Health Guide: Heart Health.

RESOURCES

[1] C J Blacklock, J R Lawrence, D Wiles, E A Malcolm, I H Gibson, C J Kelly, J R Paterson. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001 Jul ;54(7):553-5. PMID: 11429429

[2] Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc Natl Acad Sci U S A. 1987 Mar ;84(5):1417-20. PMID: 3103135

[3] P L Janssen, M B Katan, W A van Staveren, P C Hollman, D P Venema. Acetylsalicylate and salicylates in foods. Cancer Lett. 1997 Mar 19 ;114(1-2):163-4. PMID: 9103279

[4] [Ullmann’s Encyclopedia of Industrial Chemistry. 6th ed.Vol 1: Federal Republic of Germany: Wiley-VCH Verlag GmbH & Co. 2003 to Present, p. V31 725 (2003)]

[5] K R Bridges, G J Schmidt, M Jensen, A Cerami, H F Bunn. The acetylation of hemoglobin by aspirin. In vitro and in vivo. J Clin Invest. 1975 Jul;56(1):201-7. PMID: 237937

[6] Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs. Curr Med Res Opin. 2009 Nov;25(11):2785-93. PMID: 19788350

[7] Analgesic use and the risk of hearing loss in men. Am J Med. 2010 Mar;123(3):231-7. PMID:20193831

[8] Hearing loss in a woman on aspirin: the silent pharmacokinetic parameter. Ther Drug Monit. 2009 Feb;31(1):1-2. PMID: 19155962

[9] Too much of a good thing: long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity. Hear Res. 2010 Jun 14;265(1-2):63-9. Epub 2010 Mar 6. PMID: 20214971

[10] Long-term administration of salicylate enhances prestin expression in rat cochlea. Int J Audiol. 2009 Jan;48(1):18-23. PMID: 19173110

[11] Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats. Neuroscience. 2010 Feb 17;165(4):1323-32. Epub 2009 Dec 1. PMID: 19958810

[12] Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience. 2010 Jun 16;168(1):288-99. Epub 2010 Mar 15. PMID: 20298761

[13] Predictors of mortality in trauma patients with intracranial hemorrhage on preinjury aspirin or clopidogrel. J Trauma. 2008 Oct;65(4):785-8. PMID: 18849791

[14] The effect on mortality of antipyretics in the treatment of influenza infection: systematic review and meta-analysis. J R Soc Med. 2010 Oct;103(10):403-11. PMID: 20929891

[15] Aspirin in the aetiology of Crohn’s disease and ulcerative colitis: a European prospective cohort study. Aliment Pharmacol Ther. 2011 Sep ;34(6):649-55. Epub 2011 Jul 26. PMID: 21790683

[16] Helicobacter pylori infection in bleeding peptic ulcer patients after non-steroidal antiinflammatory drug consumption. World J Gastroenterol. 2011 Oct 28 ;17(40):4509-16. PMID:22110282

[17] Toxnet.nlm.nih.gov, Hazardous Substances Data Base: Aspirin

[18] Neville D Yeomans, Christopher J Hawkey, Wayne Brailsford, Jørgen Naesdal. Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs. Curr Med Res Opin. 2009 Nov;25(11):2785-93. PMID: 19788350

[19] Incidence of small bowel injury induced by low-dose aspirin: a crossover study using capsule endoscopy in healthy volunteers. Digestion. 2009;79(1):44-51. Epub 2009 Feb 26. PMID: 19246922

[20] Esophageal mucosal lesion with low-dose aspirin and prasugrel mimics malignancy: a case report. World J Gastroenterol. 2011 Sep 21 ;17(35):4048-51. PMID: 22046096

[21] Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs. Curr Med Res Opin. 2009 Nov;25(11):2785-93. PMID: 19788350

[22] M P&uuml;tter, K H Grotemeyer, G W&uuml;rthwein, M Araghi-Niknam, R R Watson, S Hosseini, P Rohdewald. Inhibition of smoking-induced platelet aggregation by aspirin and pycnogenol. Thromb Res. 1999 Aug 15;95(4):155-61. PMID: 10498385

[23] M L Arruzazabala, S Valdés, R Más, D Carbajal, L Fernández. Comparative study of policosanol, aspirin and the combination therapy policosanol-aspirin on platelet aggregation in healthy volunteers. Pharmacol Res. 1997 Oct;36(4):293-7. PMID: 9425618

This article first appeared at GreenMedInfo.

Comments

Science & Technology

Facebook patented hand tracking system

Facebook patented hand tracking with finger emitters.

Facebook Technologies / USPTO, 2020

Facebook has patented a hand tracking system using small transponders at the ends of the fingers. The patent describes a glove with several emitters and a receiving system that distinguishes the signals from each emitter, calculates their location and restores the shape of the hand. The Patently Apple website drew attention to the patent.

Motion capture systems are often used when shooting movies, as well as in virtual reality. There are several standard tracking methods. For professional projects, an external system is often used, which consists of high-speed infrared cameras on the walls and infrared markers on clothes.

This is a rather inconvenient and extremely expensive system, so home VR systems usually use gloves that track the pose of the hand, and a separate massive beacon on the arm that allows the base station near the computer to track its location. Also recently, hand tracking systems using cameras and machine vision algorithms have begun to develop. In particular, at the end of 2019, such a feature appeared in Oculus Quest, which is being developed by a Facebook-owned company.

In a new patent, Facebook engineers described a method for tracking brush poses across multiple emitters. It is assumed that the system will consist of two parts: a glove and a tracking station nearby, for example, on a table near a computer or set-top box. The glove contains several transponders operating on millimeter waves. They can be located at the ends of the fingers, as well as on other parts of the brush for more precise tracking.

System diagram Facebook Technologies / USPTO, 2020

The tracking station has several antennas. They emit signals towards the glove, and transponders emit response signals. After this, the antennas receive response signals, using triangulation, they calculate the location of the transponders and create a three-dimensional model of the brush. The authors note that the signals can be modulated by time, frequency, or changed by other parameters so that they are unique for each transponder and facilitate the task of creating a model.

Glove diagram with transponders Facebook Technologies / USPTO, 2020

In recent years, many miniature emitters for the millimeter radio band have appeared. Most often they are  offered to be used for communication of the 5G standard (mmWave range), as well as in compact radars for smartphones and smart watches.

Continue Reading

Science & Technology

Do Advanced Extraterrestrial Civilizations extract energy from black holes?

Researchers from the School of Physics and Astronomy at the University of Glasgow in the UK have proven a half-century hypothesis that suggests that technologically advanced extraterrestrial civilizations could potentially extract energy from spinning black holes. An article by researchers is published in the journal Nature Physics.

In 1969, the British physicist Roger Penrose suggested that aliens can extract energy from a rotating black hole due to the fact that particles or waves flying through the ergosphere take away the energy of rotation of the black hole (this phenomenon became known as the Penrose process). 

The Soviet physicist Yakov Zeldovich developed this idea and put forward the hypothesis that a rapidly rotating cylinder is capable of amplifying the “swirling” electromagnetic waves incident on it (that is, having a certain orbital angular momentum), including quantum fluctuations in a vacuum. 

However, this effect has not yet been experimentally verified, since the cylinder had to rotate at a frequency of at least a billion times per second.

In a new work, scientists for the first time managed to observe the Zeldovich effect, achieved using acoustic waves with a frequency of 60 hertz. 

During the experiment, the researchers installed 16 speakers in the form of a ring and directed the sound toward a rotating disk made of noise-absorbing foam. In this case, the acoustic waves from one speaker lagged behind in phase from the waves from another speaker, which made it possible to simulate the orbital angular momentum. Conditions satisfying the Zeldovich effect were achieved by rotating the disk with a frequency of only 15-30 revolutions per second.

The experimental results confirmed that low-frequency modes can be amplified by up to 30 percent, passing through the noise-absorbing layer of the disk. As the speed of the disk increases, the frequency of sound waves decreases due to the Doppler effect, however, when a certain speed is reached, it again returns to its previous value, while the volume (i.e. the amplitude) increases. This is due to the fact that the waves took part of the rotational energy from the disk.

The Penrose process occurs when the body has two parts, one of which falls beyond the horizon of events. If two fragments have certain speeds, a special position relative to each other and fly along the correct paths, then the fall of one fragment transfers the energy to the other part, greater than the energy that the body had originally.

 For an outside observer, it looks as if the body was divided into a part with positive energy and a part with “negative energy”, which when falling beyond the horizon reduces the angular momentum of the black hole. As a result, the first fragment takes off from the ergosphere, “taking” the energy of rotation of the black hole.

Continue Reading

Science & Technology

What if we could create antigravitу?

Are уou tired of cramped citу life? Then anti-gravitу is just what уou need! We still don’t know the technologу, but if we do, it will completelу change our world.

How can this change the waу we build our cities? Whу would this allow us to travel further into space? And how can this help us colonize alien worlds?

According to astronomers, gravitу is “the force bу which a planet or other bodу pulls objects to its center. We reallу don’t know whу gravitу behaves like this; we just know that this is so, and that’s all we need for this.

As we talk about things that we know too little about, let’s get to know her better. Antigravitу, as the name implies, is a hуpothetical means of counteracting the effects of gravitу.

Although manу scholars saу this is not possible, this does not stop us from reasoning. But if we ever find out, we will have to delve into an even more mуsterious part of our universe – antimatter.

To understand what antimatter is and how it relates to antigravitу, we will go back during the Big Bang. When the Big Bang occurred, he created matter and antimatter. Matter consists of atoms – the building blocks of chemical elements such as helium, oxуgen and hуdrogen.

Inside the atoms уou will find particles, such as protons, which have a positive electric charge, and electrons, which usuallу have a negative charge. For antimatter, the electric charge of these particles is reversed.

This led to some speculations that other properties will also be changed, such as how theу react to gravitу. We could not verifу how antimatter reacts to gravitу – for now. However, some theories saу that when we do this, we will find that antimatter particles do not fall, giving us our first real example of antigravitу.

If so, this could lead to a scientific and technological revolution. We could theoreticallу use antimatter to develop technologу that protects people or objects from gravitational forces. In other words, we can make so manу things float in the air.

So what would we do with this crazу technologу? Well, firstlу, there should be hoverboards, right? We’re talking about real hoverboards that don’t touch the ground!

We could build floating cities to accommodate our ever-growing population. Massive structures can be suspended over ponds or rockу terrain that we could not build. But perhaps we will see the greatest importance of anti-gravitу technologу, if we look even further – at the stars.

Space travel will be much safer and cheaper. Space shuttles will not need rocket fuel to launch from our atmosphere. Instead, we could just stop the effects of gravitу on them.

Antigravitу will not onlу help us get to space; It can also help us find a new home there. We no longer need to worrу about planets with gravitу too strong for human habitation, since we can simplу use antigravitу to protect ourselves from it.

Yes, we understand that there is a lot of unknown and hуpothetical with this, but here’s what happens when we talk about something as mуsterious as antimatter.

Continue Reading
Advertisement

DO NOT MISS

Trending