Connect with us

Science & Technology

The Evidence Against Aspirin And For Natural Alternatives

Sayer Ji

As far back as the 5th century BC the Greek physician Hippocrates wrote about the use of a bitter powder extracted from willow bark that reduced fevers and eased aches and pains. Native Americans also used an infusion of willow bark for similar purposes. What was this remarkable “healing” principle within the bark that relieved disease?

Known as salicylic acid (from the Latin salix, willow tree), this pain-killing compound is widely distributed throughout plants, where it functions as a hormone. The more vegetables and fruits you consume, the more likely you are to have a physiologically significant concentration of salicylic acid in your blood. This is why, for instance, vegans and vegetarians generally have higher levels than most grain- and meat-based consumers. [1]

The chemical acetyl-salicylic acid, commonly known as aspirin, is a synthetic form of salicylic acid, a compound which is formed when salicin, a bitter compound naturally found within plants like white willow bark, is broken down within the human body. Salicylic acid can also be synthesized endogenously from benzoic acid, and its urinary metabolite, salicyluric acid, has been found to overlap levels in patients on low-dose aspirin regimens. Cell research indicates that salicylic acid compounds (known as salicyclates) actually compare surprisingly well to aspirin in reducing inflammatory activity.[2]

While salicylic acid is found naturally in plants as salicylates, acetyl-salicylic acid does not exist in nature, is not formed as byproduct of natural salicylate consumption,[3] and is produced only through industrial synthesis. For example, this is one method of synthesis:

Acetylsalicylic acid is prepared by reacting acetic anhydride with salicylic acid at a temperature of <90 deg C either in a solvent (e.g., acetic acid or aromatic, acyclic, or chlorinated hydrocarbons) or by the addition of catalysts such as acids or tertiary amines.[4]

Also, the chemical modification of natural salicylic acid with an acetyl group results in the acetylation of hemoglobin,[5] essentially chemically altering the natural structure-function of our red blood cells and subsequent hemodynamics. In essence, aspirin, a semi-synthetic compound, makes the blood tissue itself semi-synthetic.

This could be why aspirin has been linked to such a broad range of unintended adverse health effects, including but not limited to:

We have a section on our database dedicated to indexing the under-reported, unintended adverse effects of aspirin, related to 50 diseases which can be viewed here: Aspirin Side Effects. We also have a section which indexes research on natural compounds studied to prevent, reduce or reverse Aspirin-Induced Toxicity.

According to US EPA statistics, up to 500 thousand pounds of the chemical was produced in the United States in 1998 alone.[17] Millions the world over take it for pain relief, including your typical headache, but also for the prevention of heart attacks and stroke.

Taking a “baby aspirin,” i.e. an 81 mg dose, is considered safer — which it is relative to a 325 mg “adult dose” – but is known to cause widespread and significant gastroduodenal damage. A study published in 2009 in the journal Currrent Medical Research & Opinion titled, “Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs,” found the following:

Data suggest that ASA causes significant gastroduodenal damage even at the low doses used for cardiovascular protection. These effects (both systemic and possibly local) may be pharmacodynamically distinct from the gastroduodenal toxicity seen with NSAIDs.[18]

Another 2009 study found that 80% of healthy individuals who uses short-term (14 days), low-dose aspirin experienced small intestinal toxicity, including small bowel mucosal breaks and mucosal inflammation. [19] Also, there are reports of esophageal mucosal lesions induced by low-dose aspirin and other antiplatelet medications mimicking esophageal malignancy.[20]

Data suggest that ASA [aspirin]causes significant gastroduodenal damage even at the low doses used for cardiovascular protection. These effects (both systemic and possibly local) may be pharmacodynamically distinct from the gastroduodenal toxicity seen with NSAIDs.[21]

Hemorrhagic side effects, in fact, are one of the greatest challenges facing those who use aspirin for prevention. By taking a drug which prevents clotting, aspirin can work too well, resulting in bleeding disorders or events, some of which may be life-threatening, even lethal.

So, given the serious, unintended adverse health effects of aspirin therapy, what are some evidence-based natural alternatives?

Researched aspirin alternatives include:

  • Pycnogenol: A human study published in 1999 in the journal Thrombotic Research found that pycnogenol was superior (i.e. effective at a lower dosage) to aspirin at inhibiting smoking-induced clotting, without the significant (and potentially life-threatening) increase in bleeding time associated with aspirin use.[22] The abstract is well worth reading in its entirety:

The effects of a bioflavonoid mixture, Pycnogenol, were assessed on platelet function in humans. Cigarette smoking increased heart rate and blood pressure. These increases were not influenced by oral consumption of Pycnogenol or Aspirin just before smoking. However, increased platelet reactivity yielding aggregation 2 hours after smoking was prevented by 500 mg Aspirin or 100 mg Pycnogenol in 22 German heavy smokers. In a group of 16 American smokers, blood pressure increased after smoking. It was unchanged after intake of 500 mg Aspirin or 125 mg Pycnogenol. In another group of 19 American smokers, increased platelet aggregation was more significantly reduced by 200 than either 150 mg or 100 mg Pycnogenol supplementation. This study showed that a single, high dose, 200 mg Pycnogenol, remained effective for over 6 days against smoking-induced platelet aggregation. Smoking increased platelet aggregation that was prevented after administration of 500 mg Aspirin and 125 mg Pycnogenol. Thus, smoking-induced enhanced platelet aggregation was inhibited by 500 mg Aspirin as well as by a lower range of 100-125 mg Pycnogenol. Aspirin significantly (p<0.001) increased bleeding time from 167 to 236 seconds while Pycnogenol did not.These observations suggest an advantageous risk-benefit ratio for Pycnogenol.” [emphasis added]

Pycnogenol also has about as many “side benefits” as aspirin has side effects. You can view them on our pycnogenol research page.

  • Policosanol: Already well-known for its ability to modulate blood cholesterol levels as effectively as statins, but without their notorious side effects, this sugar cane wax extract has been found to be as effective as aspirin at inhibiting clotting, but at a lower, safer dose.[23]

There are actually a broad range of natural compounds, including foods and spices, with demonstrable platelet-inhibiting activity. You will find a list of them on our natural platelet inhibitor pharmacological actions page. Another highly relevant section on our website is the Thrombosis Research page.

Ultimately, however, cardiovascular disease and heart attacks, for instance, are not caused by a lack of aspirin. To explore further the research related to preventing and treating heart disease naturally, visit our Health Guide: Heart Health.

RESOURCES

[1] C J Blacklock, J R Lawrence, D Wiles, E A Malcolm, I H Gibson, C J Kelly, J R Paterson. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001 Jul ;54(7):553-5. PMID: 11429429

[2] Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc Natl Acad Sci U S A. 1987 Mar ;84(5):1417-20. PMID: 3103135

[3] P L Janssen, M B Katan, W A van Staveren, P C Hollman, D P Venema. Acetylsalicylate and salicylates in foods. Cancer Lett. 1997 Mar 19 ;114(1-2):163-4. PMID: 9103279

[4] [Ullmann’s Encyclopedia of Industrial Chemistry. 6th ed.Vol 1: Federal Republic of Germany: Wiley-VCH Verlag GmbH & Co. 2003 to Present, p. V31 725 (2003)]

[5] K R Bridges, G J Schmidt, M Jensen, A Cerami, H F Bunn. The acetylation of hemoglobin by aspirin. In vitro and in vivo. J Clin Invest. 1975 Jul;56(1):201-7. PMID: 237937

[6] Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs. Curr Med Res Opin. 2009 Nov;25(11):2785-93. PMID: 19788350

[7] Analgesic use and the risk of hearing loss in men. Am J Med. 2010 Mar;123(3):231-7. PMID:20193831

[8] Hearing loss in a woman on aspirin: the silent pharmacokinetic parameter. Ther Drug Monit. 2009 Feb;31(1):1-2. PMID: 19155962

[9] Too much of a good thing: long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity. Hear Res. 2010 Jun 14;265(1-2):63-9. Epub 2010 Mar 6. PMID: 20214971

[10] Long-term administration of salicylate enhances prestin expression in rat cochlea. Int J Audiol. 2009 Jan;48(1):18-23. PMID: 19173110

[11] Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats. Neuroscience. 2010 Feb 17;165(4):1323-32. Epub 2009 Dec 1. PMID: 19958810

[12] Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience. 2010 Jun 16;168(1):288-99. Epub 2010 Mar 15. PMID: 20298761

[13] Predictors of mortality in trauma patients with intracranial hemorrhage on preinjury aspirin or clopidogrel. J Trauma. 2008 Oct;65(4):785-8. PMID: 18849791

[14] The effect on mortality of antipyretics in the treatment of influenza infection: systematic review and meta-analysis. J R Soc Med. 2010 Oct;103(10):403-11. PMID: 20929891

[15] Aspirin in the aetiology of Crohn’s disease and ulcerative colitis: a European prospective cohort study. Aliment Pharmacol Ther. 2011 Sep ;34(6):649-55. Epub 2011 Jul 26. PMID: 21790683

[16] Helicobacter pylori infection in bleeding peptic ulcer patients after non-steroidal antiinflammatory drug consumption. World J Gastroenterol. 2011 Oct 28 ;17(40):4509-16. PMID:22110282

[17] Toxnet.nlm.nih.gov, Hazardous Substances Data Base: Aspirin

[18] Neville D Yeomans, Christopher J Hawkey, Wayne Brailsford, Jørgen Naesdal. Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs. Curr Med Res Opin. 2009 Nov;25(11):2785-93. PMID: 19788350

[19] Incidence of small bowel injury induced by low-dose aspirin: a crossover study using capsule endoscopy in healthy volunteers. Digestion. 2009;79(1):44-51. Epub 2009 Feb 26. PMID: 19246922

[20] Esophageal mucosal lesion with low-dose aspirin and prasugrel mimics malignancy: a case report. World J Gastroenterol. 2011 Sep 21 ;17(35):4048-51. PMID: 22046096

[21] Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs. Curr Med Res Opin. 2009 Nov;25(11):2785-93. PMID: 19788350

[22] M P&uuml;tter, K H Grotemeyer, G W&uuml;rthwein, M Araghi-Niknam, R R Watson, S Hosseini, P Rohdewald. Inhibition of smoking-induced platelet aggregation by aspirin and pycnogenol. Thromb Res. 1999 Aug 15;95(4):155-61. PMID: 10498385

[23] M L Arruzazabala, S Valdés, R Más, D Carbajal, L Fernández. Comparative study of policosanol, aspirin and the combination therapy policosanol-aspirin on platelet aggregation in healthy volunteers. Pharmacol Res. 1997 Oct;36(4):293-7. PMID: 9425618

This article first appeared at GreenMedInfo.

Advertisement
Comments

Science & Technology

This is the world’s first commercial flying car

The world’s first commercial flying car is already on sale. It is equipped with two retractable propellers and rear wings.

The vehicle was presented during the Miami Art Week 2019 by the Dutch company PAL-V International. It is called Liberty, and its price is around 600,000 dollars.

It has Dutch engineering and Italian design, it is already in active production and has at least 70 anticipated.

“As soon as Nicolas Cugnot invented the car and the Wright brothers made their first successful flight, people began to dream of combining the two in a flying car.”

‘It turned out to be more complicated than initially estimated: a complex puzzle. However, once resolved, it would create maximum freedom in mobility’, said the executive director of the company, Robert Dingemanse.

PAL-V Flying car "width =" 780 "height =" 390 "
Credit: pal-v.com

When will it be available?

The first units are expected to reach their owners in 2021. However, it must be borne in mind that to handle it, it is necessary to have not only the driver’s license, but also the pilot’s license.

The new car has two versions, the Pioneer and the sports version. Robert Dingemanse explained that the Pioneer version differs from Liberty by its a complete carbon package. He also revealed that only 90 flying cars will be manufactured in this version.

Features of the flying car

Flying car "width =" 1100 "height =" 619 "srcset ="
PAL-V Pioneer. Credit: pal-v.com
Inside of the flying car "width =" 1104 "height =" 736 "srcset ="
Interior of the flying car. Credit: pal-v.com

The PAL-V, a three-wheeled vehicle that can carry up to two passengers and 20 kilos of cargo, is basically a hybrid between a car and a helicopter.

According to the company website, the PAL-V has a four-cylinder engine and is capable of flying at an altitude of up to 3,500 meters. The vehicle, which is made with carbon fiber, titanium and aluminum and weighs only 664 kilograms, uses gasoline for cars and can reach maximum speeds of 180 km / h in the air and 160 km / h on land.

It also has both a ground and air system similar to that of a motorcycle in which the pilot-driver tilts the machine with a control lever.

It also stands out that the PAL-V converts from car to gyrocopter in just 10 minutes and can accelerate from 0 to 100 km / h in less than 9 seconds.

Continue Reading

Science & Technology

Health authorities have confirmed a case of a rare type of smallpox in a UK patient

Skin rashes caused by ape pox. Credit: CDC's Public Health Image Library (Public domain)

A patient in England has been diagnosed with a rare case of monkeypox, as reported by Public Health England (PHE).

The rare viral infection is similar to smallpox, and though it is milder, it can be fatal.

It has been reported that the individual was in Nigeria and that he would have contracted the disease there. Later, upon returning to the United Kingdom, he stayed in the southwest of England where the disease occurred.

Upon symptoms, he was transferred to the Guy’s and St Thomas’ NHS Foundation Trust , a center specializing in infectious diseases in London.

The health authorities have taken the necessary measures to prevent the virus from spreading to other people.

Vaccination against smallpox to people in Africa. (Public domain)

The PHE said in a statement:

As a precaution, PHE experts are working closely with NHS colleagues to implement rapid infection control procedures, including contact with people who may have been in close contact with the individual to provide health information and advice. ”

But experts are not very worried about contagion, because monkeypox does not spread easily among people and the risk of affecting the population is quite low, said Dr. Meera Chand , PHE consulting microbiologist.

This transmission electron micrograph (TEM) represents a series of smallpox virus virions. Credit: CDC / Dr. Fred Murphy; Sylvia Whitfield / Wikimedia Commons

Although the infection usually occurs mildly and people get better without treatment; Some individuals may develop very serious symptoms, with a percentage of 1 to 10 percent of patients dying from the disease during outbreaks, according to the World Health Organization .

The symptoms presented are similar to those of smallpox but milder. First, fever, headaches, muscle aches, back pain, swollen lymph nodes, chills and exhaustion. Subsequently rashes may appear on the skin , starting on the face and spreading throughout the rest of the body.

This is not the first time a patient has been infected with smallpox in the United Kingdom. In 2018, there were three cases after a person was diagnosed with the disease. The individual had also returned from Nigeria.

Source: Gov.ukIFL Science

Continue Reading

Science & Technology

A cold virus can infect a pregnant woman’s fetus

The study showed that the expectant mother is able to transmit a respiratory tract infection to her unborn child.

Scientists from Tulane University (Louisiana, USA) received the first evidence that the cold virus, which affects a pregnant woman, can penetrate the placenta and infect the fetus. An article about this has been published in PLOS One .

The placenta, an organ that develops in the uterine cavity of a woman during pregnancy, provides the necessary nutrition from the mother to the embryo and simultaneously performs another important task: it filters out potential pathogenic microorganisms. However, a group of pediatricians led by Professor Giovanni Piedimonte found that this natural “barrier” is not so impenetrable.

Scientists took the placenta from donors, isolated three main types of cells – cytotrophoblasts, fibroblasts and Kashchenko – Hofbauer cells – and in vitro exposed them to the human respiratory syncytial virus, which causes respiratory tract infections. Although cytotrophoblast cells supported a weak process of the spread of the virus, two other types were more susceptible to infection. So, Kashchenko-Hofbauer cells survived and allowed the virus to replicate inside the cell walls. According to scientists, then these cells, moving inside the placenta, are able to transmit the virus to the fetus.

“Such cells do not die after they become infected,” Piedimonte explains. – When they enter the fetus, they are comparable to bombs stuffed with a virus. They do not spread the virus in the area of ​​the “explosion”, but carry it through the intercellular channels. <…> Thus, our theory is confirmed that when a woman gets a cold during pregnancy, the virus that causes the infection can pass to the fetus and cause a pulmonary infection before the birth of a child. ”

Pediatricians also suggested that the respiratory syncytial virus is able to infect the lung tissue of the unborn baby and provoke the development of an infection that will subsequently affect the predisposition to asthma. To confirm or refute their theory, the authors of the study intend to conduct clinical tests.

Last year, scientists from the University of Cambridge created an artificial and functional mini-placenta using trophoblasts, and recently it turned out that particles of air pollution can penetrate the placenta of pregnant women

Continue Reading

Recent Comments

Trending