Connect with us

Science & Technology

The 4th State of Matter Is The Most Amazing And Full of Potential. Here’s Why. –

When I was at elementary school, my teacher told me that matter exists in three possible states: solid, liquid and gas. She neglected to mention plasma, a special kind of electrified gas that’s a state unto itself.

We rarely encounter natural plasma, unless we’re lucky enough to see the Northern lights, or if we look at the Sun through a special filter, or if we poke our head out the window during a lightning storm, as I liked to do when I was a kid.

Yet plasma, for all its scarcity in our daily lives, makes up more than 99 per cent of the observable matter in the Universe (that is, if we discount dark matter).

Plasma physics is a rich and diverse field of enquiry, with its own special twist. In some areas of science, intellectual vitality comes from the beauty of grand theories and the search for deep underlying laws – as shown by Albert Einstein’s account of gravity in general relativity, or string theorists’ attempt to replace the Standard Model of subatomic particles with tiny oscillating strands of energy.

The study of plasmas also enjoys some remarkably elegant mathematical constructions, but unlike its scientific cousins, it’s mostly been driven by its applications to the real world.

First, though, how do you make a plasma?

Imagine heating up a container full of ice, and watching it pass from solid, to liquid, to gas. As the temperature climbs, the water molecules get more energetic and excitable, and move around more and more freely.

If you keep going, at something like 12,000 degrees Celsius the atoms themselves will begin to break apart. Electrons will be stripped from their nuclei, leaving behind charged particles known as ions that swirl about in the resulting soup of electrons. This is the plasma state.

The connection between blood and ‘physical’ plasma is more than mere coincidence. In 1927, the American chemist Irving Langmuir observed that the way plasmas carried electrons, ions, molecules and other impurities was similar to how blood plasma ferries around red and white bloodcells and germs.

Langmuir was a pioneer in the study of plasmas; with his colleague Lewi Tonks, he also discovered that plasmas are characterised by rapid oscillations of their electrons due to the collective behaviour of the particles.

Another interesting property of plasmas is their capacity to support so-called hydromagnetic waves – bulges that move through the plasma along magnetic field lines, similar to how vibrations travel along a guitar string.

When Hannes Alfvén, the Swedish scientist and eventual Nobel prizewinner, first proposed the existence of these waves in 1942, the physics community was skeptical.

But after Alfvén delivered a lecture at the University of Chicago, the renowned physicist and faculty member Enrico Fermi came up to him to discuss the theory, conceding that: ‘Of course such waves could exist!’ From that moment on, the scientific consensus was that Alfvén was absolutely correct.

One of the biggest motivators of contemporary plasma science is the promise of controlled thermonuclear fusion, where atoms merge together and release intense but manageable bursts of energy. This would provide an almost limitless source of safe, ‘green’ power, but it’s not an easy task.

Before fusion can occur here on Earth, the plasma must be heated to more than 100 million degrees Celsius – about 10 times hotter than the centre of the Sun!

But that’s not even the most complicated bit; we managed to reach those temperatures and beyond in the 1990s. What’s worse is that hot plasma is very unstable and doesn’t like to stay at a fixed volume, which means that it’s hard to contain and make useful.

Attempts to achieve controlled thermonuclear fusion date back to the early 1950s.

At the time, research was done secretly by the United States as well as the Soviet Union and Great Britain. In the US, Princeton University was the fulcrum for this research.

There, the physicist Lyman Spitzer started Project Matterhorn, where a secret coterie of scientists tried to spark and contain fusion in a figure-8-shaped device called a ‘stellarator’.

They didn’t have computers, and had to rely only on pen and pencil calculations. While they didn’t solve the puzzle, they ended up developing ‘the energy principle’, which remains a powerful method for testing the ideal stability of a plasma.

Meanwhile, scientists in the Soviet Union were developing a different device: the ‘tokamak’. This machine, designed by the physicists Andrei Sakharov and Igor Tamm, employed a strong magnetic field to corral hot plasma into the shape of a donut.

The tokamak was better at keeping the plasma hot and stable, and to this day most of the fusion research programmes rely on a tokamak design. To that end, a consortium of China, the European Union, India, Japan, Korea, Russia and the US has joined together to construct the world’s largest tokamak reactor, expected to open in 2025.

However, in recent years there’s also been a renewed enthusiasm for stellarators, and the world’s largest opened in Germany in 2015. Investing in both routes to fusion probably gives us our best chance of ultimately attaining success.

Plasma is also entangled with the physics of the space around Earth, where the stuff gets carried through the void on the winds generated in the upper atmosphere of the Sun.

We’re lucky that the Earth’s magnetic field shields us from the charged plasma particles and damaging radiation of such solar wind, but our satellites, spacecraft and astronauts are all exposed. Their capacity to survive in this hostile environment relies on understanding and accommodating ourselves to the quirks of plasma.

In a new field known as ‘space weather’, plasma physics plays a role similar to that of fluid dynamics in terrestrial, atmospheric conditions.

I’ve devoted much of my research to something called magnetic reconnection, where the magnetic field lines in the plasma can tear and reconnect, which leads to a rapid release of energy.

This process is believed to power the Sun’s eruptive events, such as solar flares, although detailed comprehension remains elusive. In the future, we might be able to predict solar storms the way that we can forecast bad weather in cities.

Looking backward, not forward, in space and time, my hope is that plasma physics will offer insights into how stars, galaxies and galaxy clusters first formed.

According to the standard cosmological model, plasma was pervasive in the early Universe; then everything began to cool, and charged electrons and protons bound together to make electrically neutral hydrogen atoms.

This state lasted until the first stars and black holes formed and began emitting radiation, at which point the Universe ‘reionised’ and returned to a mostly plasma state.

Finally, plasmas help to explain some of the most spectacular phenomena we’ve observed in the remotest regions of the cosmos. Take far-away black holes, massive objects so dense that even light can’t escape them. They’re practically invisible to direct observation.

However, black holes are typically encircled by a rotating disk of plasma matter, which orbits within the black hole’s gravitational pull, and emits high-energy photons that can be observed in the X-ray spectrum, revealing something about this extreme environment.

It’s been an exciting journey for me since the days I thought that solids, liquids and gases were the only kinds of matter that mattered. Plasmas still seem rather exotic, but as we learn to exploit their potential, and widen our view of the cosmos, one day they might seem as normal to us as ice and water.

And if we ever achieve controlled nuclear fusion, plasmas might be something we can no longer live without.

This article was originally published at Aeon and has been republished under Creative Commons.

Advertisement
Comments

Science & Technology

This is the world’s first commercial flying car

The world’s first commercial flying car is already on sale. It is equipped with two retractable propellers and rear wings.

The vehicle was presented during the Miami Art Week 2019 by the Dutch company PAL-V International. It is called Liberty, and its price is around 600,000 dollars.

It has Dutch engineering and Italian design, it is already in active production and has at least 70 anticipated.

“As soon as Nicolas Cugnot invented the car and the Wright brothers made their first successful flight, people began to dream of combining the two in a flying car.”

‘It turned out to be more complicated than initially estimated: a complex puzzle. However, once resolved, it would create maximum freedom in mobility’, said the executive director of the company, Robert Dingemanse.

PAL-V Flying car "width =" 780 "height =" 390 "
Credit: pal-v.com

When will it be available?

The first units are expected to reach their owners in 2021. However, it must be borne in mind that to handle it, it is necessary to have not only the driver’s license, but also the pilot’s license.

The new car has two versions, the Pioneer and the sports version. Robert Dingemanse explained that the Pioneer version differs from Liberty by its a complete carbon package. He also revealed that only 90 flying cars will be manufactured in this version.

Features of the flying car

Flying car "width =" 1100 "height =" 619 "srcset ="
PAL-V Pioneer. Credit: pal-v.com
Inside of the flying car "width =" 1104 "height =" 736 "srcset ="
Interior of the flying car. Credit: pal-v.com

The PAL-V, a three-wheeled vehicle that can carry up to two passengers and 20 kilos of cargo, is basically a hybrid between a car and a helicopter.

According to the company website, the PAL-V has a four-cylinder engine and is capable of flying at an altitude of up to 3,500 meters. The vehicle, which is made with carbon fiber, titanium and aluminum and weighs only 664 kilograms, uses gasoline for cars and can reach maximum speeds of 180 km / h in the air and 160 km / h on land.

It also has both a ground and air system similar to that of a motorcycle in which the pilot-driver tilts the machine with a control lever.

It also stands out that the PAL-V converts from car to gyrocopter in just 10 minutes and can accelerate from 0 to 100 km / h in less than 9 seconds.

Continue Reading

Science & Technology

Health authorities have confirmed a case of a rare type of smallpox in a UK patient

Skin rashes caused by ape pox. Credit: CDC's Public Health Image Library (Public domain)

A patient in England has been diagnosed with a rare case of monkeypox, as reported by Public Health England (PHE).

The rare viral infection is similar to smallpox, and though it is milder, it can be fatal.

It has been reported that the individual was in Nigeria and that he would have contracted the disease there. Later, upon returning to the United Kingdom, he stayed in the southwest of England where the disease occurred.

Upon symptoms, he was transferred to the Guy’s and St Thomas’ NHS Foundation Trust , a center specializing in infectious diseases in London.

The health authorities have taken the necessary measures to prevent the virus from spreading to other people.

Vaccination against smallpox to people in Africa. (Public domain)

The PHE said in a statement:

As a precaution, PHE experts are working closely with NHS colleagues to implement rapid infection control procedures, including contact with people who may have been in close contact with the individual to provide health information and advice. ”

But experts are not very worried about contagion, because monkeypox does not spread easily among people and the risk of affecting the population is quite low, said Dr. Meera Chand , PHE consulting microbiologist.

This transmission electron micrograph (TEM) represents a series of smallpox virus virions. Credit: CDC / Dr. Fred Murphy; Sylvia Whitfield / Wikimedia Commons

Although the infection usually occurs mildly and people get better without treatment; Some individuals may develop very serious symptoms, with a percentage of 1 to 10 percent of patients dying from the disease during outbreaks, according to the World Health Organization .

The symptoms presented are similar to those of smallpox but milder. First, fever, headaches, muscle aches, back pain, swollen lymph nodes, chills and exhaustion. Subsequently rashes may appear on the skin , starting on the face and spreading throughout the rest of the body.

This is not the first time a patient has been infected with smallpox in the United Kingdom. In 2018, there were three cases after a person was diagnosed with the disease. The individual had also returned from Nigeria.

Source: Gov.ukIFL Science

Continue Reading

Science & Technology

A cold virus can infect a pregnant woman’s fetus

The study showed that the expectant mother is able to transmit a respiratory tract infection to her unborn child.

Scientists from Tulane University (Louisiana, USA) received the first evidence that the cold virus, which affects a pregnant woman, can penetrate the placenta and infect the fetus. An article about this has been published in PLOS One .

The placenta, an organ that develops in the uterine cavity of a woman during pregnancy, provides the necessary nutrition from the mother to the embryo and simultaneously performs another important task: it filters out potential pathogenic microorganisms. However, a group of pediatricians led by Professor Giovanni Piedimonte found that this natural “barrier” is not so impenetrable.

Scientists took the placenta from donors, isolated three main types of cells – cytotrophoblasts, fibroblasts and Kashchenko – Hofbauer cells – and in vitro exposed them to the human respiratory syncytial virus, which causes respiratory tract infections. Although cytotrophoblast cells supported a weak process of the spread of the virus, two other types were more susceptible to infection. So, Kashchenko-Hofbauer cells survived and allowed the virus to replicate inside the cell walls. According to scientists, then these cells, moving inside the placenta, are able to transmit the virus to the fetus.

“Such cells do not die after they become infected,” Piedimonte explains. – When they enter the fetus, they are comparable to bombs stuffed with a virus. They do not spread the virus in the area of ​​the “explosion”, but carry it through the intercellular channels. <…> Thus, our theory is confirmed that when a woman gets a cold during pregnancy, the virus that causes the infection can pass to the fetus and cause a pulmonary infection before the birth of a child. ”

Pediatricians also suggested that the respiratory syncytial virus is able to infect the lung tissue of the unborn baby and provoke the development of an infection that will subsequently affect the predisposition to asthma. To confirm or refute their theory, the authors of the study intend to conduct clinical tests.

Last year, scientists from the University of Cambridge created an artificial and functional mini-placenta using trophoblasts, and recently it turned out that particles of air pollution can penetrate the placenta of pregnant women

Continue Reading

Recent Comments

Trending