Connect with us

Science & Technology

The 4th State of Matter Is The Most Amazing And Full of Potential. Here’s Why. –

When I was at elementary school, my teacher told me that matter exists in three possible states: solid, liquid and gas. She neglected to mention plasma, a special kind of electrified gas that’s a state unto itself.

We rarely encounter natural plasma, unless we’re lucky enough to see the Northern lights, or if we look at the Sun through a special filter, or if we poke our head out the window during a lightning storm, as I liked to do when I was a kid.

Yet plasma, for all its scarcity in our daily lives, makes up more than 99 per cent of the observable matter in the Universe (that is, if we discount dark matter).

Plasma physics is a rich and diverse field of enquiry, with its own special twist. In some areas of science, intellectual vitality comes from the beauty of grand theories and the search for deep underlying laws – as shown by Albert Einstein’s account of gravity in general relativity, or string theorists’ attempt to replace the Standard Model of subatomic particles with tiny oscillating strands of energy.

The study of plasmas also enjoys some remarkably elegant mathematical constructions, but unlike its scientific cousins, it’s mostly been driven by its applications to the real world.

First, though, how do you make a plasma?

Imagine heating up a container full of ice, and watching it pass from solid, to liquid, to gas. As the temperature climbs, the water molecules get more energetic and excitable, and move around more and more freely.

If you keep going, at something like 12,000 degrees Celsius the atoms themselves will begin to break apart. Electrons will be stripped from their nuclei, leaving behind charged particles known as ions that swirl about in the resulting soup of electrons. This is the plasma state.

The connection between blood and ‘physical’ plasma is more than mere coincidence. In 1927, the American chemist Irving Langmuir observed that the way plasmas carried electrons, ions, molecules and other impurities was similar to how blood plasma ferries around red and white bloodcells and germs.

Langmuir was a pioneer in the study of plasmas; with his colleague Lewi Tonks, he also discovered that plasmas are characterised by rapid oscillations of their electrons due to the collective behaviour of the particles.

Another interesting property of plasmas is their capacity to support so-called hydromagnetic waves – bulges that move through the plasma along magnetic field lines, similar to how vibrations travel along a guitar string.

When Hannes Alfvén, the Swedish scientist and eventual Nobel prizewinner, first proposed the existence of these waves in 1942, the physics community was skeptical.

But after Alfvén delivered a lecture at the University of Chicago, the renowned physicist and faculty member Enrico Fermi came up to him to discuss the theory, conceding that: ‘Of course such waves could exist!’ From that moment on, the scientific consensus was that Alfvén was absolutely correct.

One of the biggest motivators of contemporary plasma science is the promise of controlled thermonuclear fusion, where atoms merge together and release intense but manageable bursts of energy. This would provide an almost limitless source of safe, ‘green’ power, but it’s not an easy task.

Before fusion can occur here on Earth, the plasma must be heated to more than 100 million degrees Celsius – about 10 times hotter than the centre of the Sun!

But that’s not even the most complicated bit; we managed to reach those temperatures and beyond in the 1990s. What’s worse is that hot plasma is very unstable and doesn’t like to stay at a fixed volume, which means that it’s hard to contain and make useful.

Attempts to achieve controlled thermonuclear fusion date back to the early 1950s.

At the time, research was done secretly by the United States as well as the Soviet Union and Great Britain. In the US, Princeton University was the fulcrum for this research.

There, the physicist Lyman Spitzer started Project Matterhorn, where a secret coterie of scientists tried to spark and contain fusion in a figure-8-shaped device called a ‘stellarator’.

They didn’t have computers, and had to rely only on pen and pencil calculations. While they didn’t solve the puzzle, they ended up developing ‘the energy principle’, which remains a powerful method for testing the ideal stability of a plasma.

Meanwhile, scientists in the Soviet Union were developing a different device: the ‘tokamak’. This machine, designed by the physicists Andrei Sakharov and Igor Tamm, employed a strong magnetic field to corral hot plasma into the shape of a donut.

The tokamak was better at keeping the plasma hot and stable, and to this day most of the fusion research programmes rely on a tokamak design. To that end, a consortium of China, the European Union, India, Japan, Korea, Russia and the US has joined together to construct the world’s largest tokamak reactor, expected to open in 2025.

However, in recent years there’s also been a renewed enthusiasm for stellarators, and the world’s largest opened in Germany in 2015. Investing in both routes to fusion probably gives us our best chance of ultimately attaining success.

Plasma is also entangled with the physics of the space around Earth, where the stuff gets carried through the void on the winds generated in the upper atmosphere of the Sun.

We’re lucky that the Earth’s magnetic field shields us from the charged plasma particles and damaging radiation of such solar wind, but our satellites, spacecraft and astronauts are all exposed. Their capacity to survive in this hostile environment relies on understanding and accommodating ourselves to the quirks of plasma.

In a new field known as ‘space weather’, plasma physics plays a role similar to that of fluid dynamics in terrestrial, atmospheric conditions.

I’ve devoted much of my research to something called magnetic reconnection, where the magnetic field lines in the plasma can tear and reconnect, which leads to a rapid release of energy.

This process is believed to power the Sun’s eruptive events, such as solar flares, although detailed comprehension remains elusive. In the future, we might be able to predict solar storms the way that we can forecast bad weather in cities.

Looking backward, not forward, in space and time, my hope is that plasma physics will offer insights into how stars, galaxies and galaxy clusters first formed.

According to the standard cosmological model, plasma was pervasive in the early Universe; then everything began to cool, and charged electrons and protons bound together to make electrically neutral hydrogen atoms.

This state lasted until the first stars and black holes formed and began emitting radiation, at which point the Universe ‘reionised’ and returned to a mostly plasma state.

Finally, plasmas help to explain some of the most spectacular phenomena we’ve observed in the remotest regions of the cosmos. Take far-away black holes, massive objects so dense that even light can’t escape them. They’re practically invisible to direct observation.

However, black holes are typically encircled by a rotating disk of plasma matter, which orbits within the black hole’s gravitational pull, and emits high-energy photons that can be observed in the X-ray spectrum, revealing something about this extreme environment.

It’s been an exciting journey for me since the days I thought that solids, liquids and gases were the only kinds of matter that mattered. Plasmas still seem rather exotic, but as we learn to exploit their potential, and widen our view of the cosmos, one day they might seem as normal to us as ice and water.

And if we ever achieve controlled nuclear fusion, plasmas might be something we can no longer live without.

This article was originally published at Aeon and has been republished under Creative Commons.


Science & Technology

NTP nuclear rocket engine will take humans to Mars in just three months

Although the romance of the peaceful atom has subsided since the mid-1960s, the idea of ​​using nuclear reactors for “civilian” purposes is still regularly returned. The new nuclear rocket engine (NRM) will deliver a man to Mars much faster than is possible now.

The danger of cosmic radiation is much more serious than the risk of infection from an accident with such an engine. The most dangerous of all the constraining vectors for projects of sending people to other bodies in the solar system is cosmic radiation. Radiation from our star and galactic rays can seriously damage the health of the mission crew. Therefore, when planning flights to Mars, engineers and scientists try to reduce travel time as much as possible.

One promising way to get to the Red Planet in just three months could be a new NTP engine. Its concept was developed and submitted to NASA by Ultra Safe Nuclear Technologies ( USNC-Tech ) from Seattle, USA. The name of the unit is simply deciphered – Nuclear Thermal Propulsion ( NTP ), that is, “thermal nuclear power plant”. The novelty differs from its previously created or invented counterparts in the most secure design.

A key component of USNC’s development is mid – grade uranium fuel “pellets”. They contain 5% to 20% of the highly reactive isotope U- 235 coated with zirconium carbide ceramics. This degree of enrichment lies roughly halfway between the “civilian” nuclear power plants and the military. The proprietary ceramic coating technology makes the tablets incredibly resistant to mechanical damage and extreme temperatures.

Schematic diagram of a thermal nuclear rocket engine / © Wikipedia |  Tokono
Schematic diagram of a thermal nuclear rocket engine / © Wikipedia | Tokono

The company promises that their fuel elements are significantly superior in these parameters to those currently used at nuclear power plants. As a result, the engine will have a higher specific impulse with a lower degree of uranium enrichment than in earlier versions of NRE. In addition to the flight to Mars, among the goals of the ambitious project are other missions within the solar system. The perspectives of the concept will soon be considered by specialists from NASA and the US Department of Defense ( DoD ). Perhaps departments will even allow its commercial use by private companies.

Theoretically, NRE based on modern technologies can have a specific impulse (SR) seven times higher than that of chemical jet engines. And this is one of the key performance parameters. At the same time, unlike electric and plasma ones, the ID of a nuclear rocket engine is combined with high thrust. One of the limiting factors in the use of NRE, in addition to safety issues, are extremely high temperatures in the reactor core.

The higher the temperature of the gases flowing out of the engine, the more energy they have. And accordingly, they create traction. However, mankind has not yet come up with relatively inexpensive and safe materials that can withstand more than three thousand degrees Celsius without destruction. The solution created by USNC will operate at the limit of modern materials science (3000 ° C) and have a specific impulse twice that of the best liquid-propellant engines.

Tests of the first nuclear jet engine in 1967 / © NASA
Tests of the first nuclear jet engine in 1967 / © NASA

The official press release does not specify which working body will be used in NTP . Usually, in all NRE projects, the reactor core heats hydrogen, less often ammonia. But, since we are talking about a long-term mission, the creators could have chosen some other gas. Keeping liquid hydrogen on board for three months is no easy task. But you still need to invent something for the way back.

Continue Reading

Science & Technology

Scientist Peter Scott-Morgan is set to become “the world’s first complete cyborg”

Scientist and roboticist Peter Scott Morgan, who is using an advanced version of Stephen Hawking's communication system, built by Intel. INTEL

Two years ago scientist Peter Scott-Morgan was diagnosed with motor neuron disease, also known as Lou Gehrig’s disease, and today he is still fighting for a new life, not just for survival.

This October, Dr. Scott-Morgan is on track to become the world’s first full-fledged cyborg, potentially giving him more years of life.

The world’s first complete cyborg

It was in 2017 that Dr. Peter Scott-Morgan (a brilliant robotics writer, scientific writer, and talented speaker) was diagnosed with degenerative motor neuron disease that ultimately paralyzed his entire body except his eyes.

The diagnosis is understandably grim, especially considering that he has only two years to live, but he has not given up the fight.

Teaming up with world-class organizations with expertise in artificial intelligence, Dr. Scott-Morgan is transforming himself into what he calls “the world’s first fully fledged cyborg.”

“And when I say ‘Cyborg’, I mean not just that some kind of payment will be implanted in me, I mean that I will become the most advanced human cybernetic organism ever created on Earth for 13.8 billion years. My body and brain will be irreversibly changed, ”says Dr. Scott-Morgan.

What does it mean to be human

According to Dr. Scott-Morgan, he will become part robot and part living organism. Moreover, the change will not be one-time, but with subsequent updates.

“I have more updates in the process than Microsoft ,” says Dr. Scott-Morgan.

AI-powered creative expression

The cyborg artist is a great example of the power of human-AI collaboration. AI uses the data that make up Peter’s digital portrait ( articles, videos, images, and social media ) and is trained to recognize key ideas, experiences, and images.

Peter will introduce a theme, AI will suggest composition, and Peter will apply images to suggest style and mood. Peter will direct the AI ​​to render a new digital image that none of them could create alone.

A unique blend of AI and human, reflects Peter’s creative and emotional self – a critical aspect of what it means to be human.

Peter 2.0

This October, Dr. Scott-Morgan will undergo what he calls the latest procedure that will transform him into “Complete Cyborg”.

October 9 he tweeted a photo of himself, writing the following:

“This is my last post as Peter 1.0. Tomorrow I will trade my vote for potentially decades of life as we complete the last medical procedure for my transition to Full Cyborg, in the month that I was told statistically I would be dead. I am not dying, I am transforming. ! Oh, how I LOVE science !!! “.

Continue Reading

Science & Technology

Japan has developed an inflatable scooter that weighs practically nothing

The University of Tokyo engineers have developed the Poimo inflatable electric scooter, which is created individually for each owner. It is enough to send your photo to the manufacturers – and a personal optimized model will be assembled for you.

The scooter is designed with a special program for the body size of a particular user and his specific fit. Moreover, each owner is free to make any changes to this model. If he makes any changes to the drawing, the program will automatically redesign the electric bike to maintain its strength, stability and controllability. When the model is finished and approved, it is handed over to the manufacturer.

Scooter Poimo

The scooter consists of seven separate inflatable sections that are constructed from durable fabric and sewn with straight stitch. It remains to add electronic components – in particular, a brushless motor and a lithium-ion battery. 

The finished electric scooter weighs about 9 kg and can travel at speeds up to 6 km / h (that is, slightly faster than a pedestrian). It can work for an hour on one charge.

This is how the current version of Poimo looks like in action:

Continue Reading