Connect with us

Science & Technology

Scientists Capture Rare Photographs of Red Lightning

Jason Ahrns, a graduate student at the University of Alaska-Fairbanks, and other scientists from the U.S. Air Force Academy and Fort Lewis College—all part of a project sponsored by the National Science Foundation—have been on a mission. This summer, the group has taken to the skies in the National Center for Atmospheric Research’s Gulfstream V research aircraft, logging a total of 30 hours over multiple flights, in search of sprites.

Sprites, also known as red lightning, are electrical discharges that appear as bursts of red light above clouds during thunderstorms.Because the weather phenomenon is so fleeting (sprites flash for just milliseconds) and for the most part not visible from the ground, they are difficult to observe and even more difficult to photograph, rather like the mischievous air spirits of the fantasy realm that they’re named for. Ahrns and his colleagues, however, have captured extremely rare photographs of the red lightning, using DSLR cameras and high speed video cameras positioned in the plane’s window. The researchers hope to learn more about the physical and chemical processes that give rise to sprites and other forms of upper atmospheric lightning.

What’s it like to capture images of some of nature’s most short-lived and erratic features? I questioned Ahrns over email, and he explained what sprites are, why they occur, how scientists find them and why he’s so interested in the elusive phenomena.

First of all, what is a sprite? 

A sprite is a kind of upper atmosphere electrical discharge associated with thunderstorms. A large electric field, generated by some lightning strokes, ionizes the air high above the cloud, which then emits the light we see in the pictures. They obviously beg comparison to the regular lightning bolts we see all the time, but I like to point out that the sprites are much higher, with the tops reaching up to around 100 kilometers, and higher. A lightning bolt might stretch around 10 kilometers from the cloud to the ground, but a sprite can reach 50 kilometers tall.

A “jellyfish” sprite captured over Republic County, Kansas, on August 3, 2013. Image courtesy of Jason Ahrns via Flickr.

Under what conditions do they occur?

They’re associated with positive lightning strokes, which is when the cloud has a buildup of positive charge and releases a bolt of lightning. Negative strokes, from a buildup of negative charge, are about 10 times more common, so sprites aren’t strongly associated with the most common kind of lightning, but it’s not really that uncommon either. More than just a positive stroke, the more charge that was moved during the stroke, the better the chances for a sprite. So we look for a large positive charge-moment-change, which is basically the positive strokes weighted by how much charge was moved. Most large thunderstorms seem to produce the conditions that lead to sprites, but some more than others. We just look for a storm with a history of lots of large positive charge-moment-change and go look at it.

What’s your scientific background? And how did you get interested in sprites?

I’m primarily an aurora researcher, that’s what I’m doing my thesis on at UAF. I got involved in sprites because one of my graduate committee members is organizing these campaigns and needed some extra help. I thought sprites were fascinating, and my advisor was supportive of me branching out a bit, so I hopped aboard the team.

Sprites over Red Willow County, Nebraska, on August 12, 2013. Image courtesy of Jason Ahrns via Flickr.

From what I understand, not much is known about red lightning, discovered just 25 years or so ago. With the NSF project, what are you and the other scientists hoping to learn? What are the biggest questions you have?

With this campaign we’re focusing on three questions. First, what basic physical and chemical processes are occurring? It’s still not clear what exactly is happening in a sprite, and why there are different kinds of sprites, and what conditions give you a column sprite vs. a carrot sprite, for example. (All the sprite names just refer to their shape.) Next, do sprites have a large scale impact on the middle atmosphere? Sprites clearly represent some kind of transfer of energy, but is it on a scale that has a significant effect on the weather and climate? We can’t answer that without studying them. And, then, what can we learn about basic streamer physics? The tendrils coming off the bottom of the sprites are ‘streamers’—little balls of ionization—moving about. Streamer speed and lifetime is related to air density, so studying sprites in the very low density upper atmosphere is like looking at streamers with a magnifying glass in slow motion, though they’re still quite fast!

How many sprite-hunting missions have you been on?

Personally, this is my second aerial campaign. The first, in 2011, flew a total of 40 airborne hours, and this campaign did another 30 hours. It’s probably around 15ish total flights. The same crew, minus me, did one other aerial campaign in 2009.

Ahrns captured these blue jets, which look like flames from a butane lighter, over Republic County, Kansas, on August 3, 2013. Unlike sprites, blue jets aren’t directly triggered by lightning, but seem to be somehow related to the presence of hail storms. Image courtesy of Jason Ahrns via Flickr.

What conditions, times of the day, areas of the country and altitudes are ideal for these flights?

The midwest is productive, mostly because it gets these powerful thunderstorms that last all night. Obviously, we need it to be dark, but other than that the time of night doesn’t seem to matter much, only how strong the storm is and how much powerful positive lightning it’s producing. We do notice that when the storm is going good it produces the column sprites and carrot sprites, but as it dies off it seems to switch over to less frequent, but bigger and brighter, jellyfish sprites. We fly as high as we can get, usually between 41,000 and 45,000 feet, but that’s simply to get a view over the clouds. We’re still below the sprites.

The lightning lasts just milliseconds, so I’m especially curious about how you photograph it. What equipment do you use?

For the still photographs, I just set my camera (a Nikon D7000 and a fast lens) facing out the window and set an intervalometer so the camera just constantly snaps pictures. Then I go through later and delete everything that doesn’t have a sprite in it. It’s the same principle as lightning photography; it seems like you’d have to get the timing just right but it’s really just statistical, if you snap a bunch of pictures one of them is going to get something sooner or later. I probably snap on the order of 1,000 pictures for every sprite I come away with.

For the high speed video cameras, the camera has a buffer that constantly cycles through the previous however many frames of video, and when I see a sprite I hit a trigger that tells the camera to stop and save whatever it just recorded. When we’re running at 10,000 frames per second, the buffer fills up in about a second, so that’s how long I have to recognize a sprite and hit the button. This can be pretty taxing on a slow night when you have to watch nothing happen for 45 minutes straight and still be ready with that less than one second reaction time.

Can you describe the setup? How do you actually take photographs from the plane window?

A picture is worth a thousand words, right?

Ahrns’s setup near the plane’s window. Image courtesy of Jason Ahrns via Flickr.

And for the high speed video…

His setup for capturing high speed video. Image courtesy of Jason Ahrns via Flickr.

We have an internet connection aboard the plane so we can watch weather conditions in real time. We just point the above cameras at the most productive looking part of the storm and wait for sprites.

How rare are photos like these that you have taken?

As far as I can tell, they’re pretty rare. There are some sprite images taken with meteor cameras and webcams out there, but they’re usually low resolution due to being very far away and using a wide angle lens. I’ve seen two or three sprite images taken with a DSLR, but they’re still from the ground and a good distance away, and usually shots of something else that got lucky with a sprite in the background. I have the advantage of being up in the air, close to the sprite producing region, with a good guess of where the sprites will appear, so I can use a lens with a narrower field of view to capture the sprite up close.

As for the images I got of blue jets, as far as I can tell they’re actually the first images of jets taken with a DSLR. That makes some sense, because the jets are a lot closer to the top of the clouds than sprites so much harder to see from the ground. Being in the air is a major advantage.

Taken over Red Willow County, Nebraska, on August 12, 2013. Image courtesy of Jason Ahrns via Flickr.

What do you find artful about the images, if anything?

I think there’s a really otherwordly starkness about them. Take this one (above), for example. You’ve got this nice serene starfield, and some cool, calming blue light coming up from the lightning below. Then BLAM! This weird, menacing, totally alien looking sprite just takes over the whole scene, like ‘I’m here, what are you gonna do about it?’

Hans Nielsen, the principal investigator on the campaign (and my previously mentioned committee member), says this one (below) reminds him of the classic Dutch paintings, with its sepia tones and slight blurring from the atmospheric haze.

Taken over Canadian County, Oklahoma, on August 6, 2013. Image courtesy of Jason Ahrns via Flickr.

What have you learned thus far about sprites by participating in this project?

Personally? When I joined the 2011 campaign I knew nothing about sprites beyond the Wikipedia entry. I learn more every night of the campaigns, listening to the others talk about conditions beforehand, what we’re seeing during the flights and our ‘what we did right, what we did wrong’ discussions over post-flight beer. I’m still a newbie compared to the other guys, but I’m now at the point where I can field most general public questions about sprites and sprite hunting.

Source

Science & Technology

NTP nuclear rocket engine will take humans to Mars in just three months

Although the romance of the peaceful atom has subsided since the mid-1960s, the idea of ​​using nuclear reactors for “civilian” purposes is still regularly returned. The new nuclear rocket engine (NRM) will deliver a man to Mars much faster than is possible now.

The danger of cosmic radiation is much more serious than the risk of infection from an accident with such an engine. The most dangerous of all the constraining vectors for projects of sending people to other bodies in the solar system is cosmic radiation. Radiation from our star and galactic rays can seriously damage the health of the mission crew. Therefore, when planning flights to Mars, engineers and scientists try to reduce travel time as much as possible.

One promising way to get to the Red Planet in just three months could be a new NTP engine. Its concept was developed and submitted to NASA by Ultra Safe Nuclear Technologies ( USNC-Tech ) from Seattle, USA. The name of the unit is simply deciphered – Nuclear Thermal Propulsion ( NTP ), that is, “thermal nuclear power plant”. The novelty differs from its previously created or invented counterparts in the most secure design.

A key component of USNC’s development is mid – grade uranium fuel “pellets”. They contain 5% to 20% of the highly reactive isotope U- 235 coated with zirconium carbide ceramics. This degree of enrichment lies roughly halfway between the “civilian” nuclear power plants and the military. The proprietary ceramic coating technology makes the tablets incredibly resistant to mechanical damage and extreme temperatures.

Schematic diagram of a thermal nuclear rocket engine / © Wikipedia |  Tokono
Schematic diagram of a thermal nuclear rocket engine / © Wikipedia | Tokono

The company promises that their fuel elements are significantly superior in these parameters to those currently used at nuclear power plants. As a result, the engine will have a higher specific impulse with a lower degree of uranium enrichment than in earlier versions of NRE. In addition to the flight to Mars, among the goals of the ambitious project are other missions within the solar system. The perspectives of the concept will soon be considered by specialists from NASA and the US Department of Defense ( DoD ). Perhaps departments will even allow its commercial use by private companies.

Theoretically, NRE based on modern technologies can have a specific impulse (SR) seven times higher than that of chemical jet engines. And this is one of the key performance parameters. At the same time, unlike electric and plasma ones, the ID of a nuclear rocket engine is combined with high thrust. One of the limiting factors in the use of NRE, in addition to safety issues, are extremely high temperatures in the reactor core.

The higher the temperature of the gases flowing out of the engine, the more energy they have. And accordingly, they create traction. However, mankind has not yet come up with relatively inexpensive and safe materials that can withstand more than three thousand degrees Celsius without destruction. The solution created by USNC will operate at the limit of modern materials science (3000 ° C) and have a specific impulse twice that of the best liquid-propellant engines.

Tests of the first nuclear jet engine in 1967 / © NASA
Tests of the first nuclear jet engine in 1967 / © NASA

The official press release does not specify which working body will be used in NTP . Usually, in all NRE projects, the reactor core heats hydrogen, less often ammonia. But, since we are talking about a long-term mission, the creators could have chosen some other gas. Keeping liquid hydrogen on board for three months is no easy task. But you still need to invent something for the way back.

Continue Reading

Science & Technology

Scientist Peter Scott-Morgan is set to become “the world’s first complete cyborg”

Scientist and roboticist Peter Scott Morgan, who is using an advanced version of Stephen Hawking's communication system, built by Intel. INTEL

Two years ago scientist Peter Scott-Morgan was diagnosed with motor neuron disease, also known as Lou Gehrig’s disease, and today he is still fighting for a new life, not just for survival.

This October, Dr. Scott-Morgan is on track to become the world’s first full-fledged cyborg, potentially giving him more years of life.

The world’s first complete cyborg

It was in 2017 that Dr. Peter Scott-Morgan (a brilliant robotics writer, scientific writer, and talented speaker) was diagnosed with degenerative motor neuron disease that ultimately paralyzed his entire body except his eyes.

The diagnosis is understandably grim, especially considering that he has only two years to live, but he has not given up the fight.

Teaming up with world-class organizations with expertise in artificial intelligence, Dr. Scott-Morgan is transforming himself into what he calls “the world’s first fully fledged cyborg.”

“And when I say ‘Cyborg’, I mean not just that some kind of payment will be implanted in me, I mean that I will become the most advanced human cybernetic organism ever created on Earth for 13.8 billion years. My body and brain will be irreversibly changed, ”says Dr. Scott-Morgan.

What does it mean to be human

According to Dr. Scott-Morgan, he will become part robot and part living organism. Moreover, the change will not be one-time, but with subsequent updates.

“I have more updates in the process than Microsoft ,” says Dr. Scott-Morgan.

AI-powered creative expression

The cyborg artist is a great example of the power of human-AI collaboration. AI uses the data that make up Peter’s digital portrait ( articles, videos, images, and social media ) and is trained to recognize key ideas, experiences, and images.

Peter will introduce a theme, AI will suggest composition, and Peter will apply images to suggest style and mood. Peter will direct the AI ​​to render a new digital image that none of them could create alone.

A unique blend of AI and human, reflects Peter’s creative and emotional self – a critical aspect of what it means to be human.

Peter 2.0

This October, Dr. Scott-Morgan will undergo what he calls the latest procedure that will transform him into “Complete Cyborg”.

October 9 he tweeted a photo of himself, writing the following:

“This is my last post as Peter 1.0. Tomorrow I will trade my vote for potentially decades of life as we complete the last medical procedure for my transition to Full Cyborg, in the month that I was told statistically I would be dead. I am not dying, I am transforming. ! Oh, how I LOVE science !!! “.

Continue Reading

Science & Technology

Japan has developed an inflatable scooter that weighs practically nothing

The University of Tokyo engineers have developed the Poimo inflatable electric scooter, which is created individually for each owner. It is enough to send your photo to the manufacturers – and a personal optimized model will be assembled for you.

The scooter is designed with a special program for the body size of a particular user and his specific fit. Moreover, each owner is free to make any changes to this model. If he makes any changes to the drawing, the program will automatically redesign the electric bike to maintain its strength, stability and controllability. When the model is finished and approved, it is handed over to the manufacturer.

Scooter Poimo

The scooter consists of seven separate inflatable sections that are constructed from durable fabric and sewn with straight stitch. It remains to add electronic components – in particular, a brushless motor and a lithium-ion battery. 

The finished electric scooter weighs about 9 kg and can travel at speeds up to 6 km / h (that is, slightly faster than a pedestrian). It can work for an hour on one charge.

This is how the current version of Poimo looks like in action:

Continue Reading
Advertisement

DO NOT MISS

Trending