Connect with us

Space

Oumuamua First alien object to visit our solar system is wrapped in strange organic coat

ANDREW GRIFFIN

‘It was the opposite of what I was expecting we might see’

The first ever interstellar visitor to our solar system is wrapped in a layer of organic insulation, scientists have said.

Oumuamua has enthralled astronomers and the public since it flew through the solar system in October.

As the first alien rock to travel here from another star, it was immediately recognised as highly unusual – but as scientists learn more about the object, they are discovering how strange it actually is.

Its strangeness has even led to suggestions it could be an alien artefact, rather than just an incredibly abnormal natural object.

Very little is known about what Oumuamua is, where it came from, and what it is made up of. Scientists had relatively little time to study the object as it passed through our solar system, and they are continuing to analyse the data that was obtained.

Before the rock arrived, scientists had expected that visitors of its kind would look like comets as they flew through the solar system. Such items would be made up of ice that would leave a visible stream behind them as they travelled past hot stars, they suggested.

But when Oumuamua flew past, no such activity was detected, despite flying close to the sun on its journey.

Now scientists taking part in different studies have released detailed findings on what the rock looks like and what it might be made of.

While it is probably an icy body as expected, it appears to be wrapped in an organic coat that shields the frozen water inside from being hit by the sun, according to the new research.

“In the end this was a nice result because we’ve expected all along that the majority of objects that would visit our solar system would be icy in nature,” said Alan Fitzsimmons from Queen’s University Belfast and the lead author of one of two major new studies into Oumuamua.

“It has been a puzzle that this thing looked like a big lump of rock.

“Our study says that this object could well be icy in nature but we didn’t detect that ice due to the fact it’s been baked by energetic radiation between the stars for hundreds of millions of years, or even billions of years.”

It is not certain that Oumuamua has any ice at all – the conclusion of Professor Fitzsimmons’ work is only that it can’t be ruled out. But that is because it is wrapped by its strange organic coat, and scientists can only see the very thinnest layer at the top of the object.

The coat was examined by using spectroscopy, which looks at the light being reflected from its surface and splits it down into its wavelengths. By looking at those measurements, scientists can work out what the object might be composed of.

“What we didn’t see is the signatures of the rocks you’d usually find on Earth, or you might find on the inner asteroid belt surrounding our sun,” Professor Fitzsimmons said.

It appeared red, but when looked at through infrared light it became more grey in colour. That was expected – it is what would normally come back from icy objects in our own solar system – but there did not actually appear to be any ice water coming off the surface.

Normally, ice is expected fall off such an object as it flies by the sun and the ice is warmed, forming a miniature comet.

“Looking at it we realised it had been predicted that icier objects exposed to interstellar space should naturally form a thick crust around themselves, said Professor Fitzsimmons.

“When we crunched the numbers we found that this crust should insulate the interior of the object so that if there were any ices inside it, it wouldn’t change the form.”

Scientists had long expected that we are sometimes visited by such rocks, thrown from elsewhere in the universe into our solar system.

We know that significant numbers of comets and asteroids were thrown out of our solar system when it was formed, and so can reasonably assume that the same thing happened in other planetary systems.

But they are difficult to spot since they are so dark, and none had actually been seen until now, marking an unprecedented breakthrough.

“In some ways we had expected these things for some time,” said Michele Bannister, also from Queen’s University Belfast and the author of another study of the strange rock.

“Our own solar system has ejected millions of very small rocky bodies,and so we should expect that others do the same.”

Both of the new studies attempted to understand how the rock looks and what exactly it might be made of. Professor Fitzsimmons used spectroscopy and thermal modelling to try to understand the rock’s composition, while Dr Bannister’s research observed the colour of Oumuamua and used that to try to discover how it looked.

Studying the rock also gives a unique opportunity to understand how other stars formed and how objects might cope with the harsh environment of space, by giving us a direct look at something that has endured it.

The work was destined to find something of interest either way, since the rock is such a strange visitor and is very old. “It’s travelled for millions or billions of years – it could be older than our solar system,” said Dr Bannister.

The work to find what colour it is, for instance, found that the rock appeared to be red. But the exact kind of red – which could indicate what it is made of – appears to vary, with some initial observations suggesting a dark colour while others showed it being more neutral.

Those neutral colours were largely in line with some of the objects we see in our own solar system.

“It’s come from a very long way away, but it looks very familiar,” said Dr Bannister. “It was the opposite of what I was expecting we might see.”

Dr Bannister has been working on a project called the Outer Solar System Origins Survey. That work uses telescopes to measure the colours of objects in the distant reaches of our solar system, and has developed techniques to help understand what those far away rocks might look like – difficult, when they are so dark and far away that little light comes back.

So when Oumuamua flew past, Dr Bannister and her colleagues looked to do the same thing for this rock, and “see if we can put this object in context with this really well-characterised set of objects”. They began observations soon after it was first detected.

That was doubly important because the trajectory that the rock was coming towards us from meant that we did not actually see it until it had gone past the Earth.

So there was a rapid effort to turn all the facilities that might help to look at it and learn as much as possible before it was too distant.

Scientists hope they can spot the next object quicker, after waiting 19 years for this one.

Oumuamua was first spotted on 19 October, by the Pan-STARRS project that uses a range of different technologies to observe the sky. Scientists realised very quickly that it was both an unprecedented visit from outside the solar system and that they would have very little time to get a look at it before it disappeared, meaning they rushed to learn as much about it as they could.

“It took a few days for everyone to be convinced that the orbit truly was from outside the solar system,” said Dr Bannister. “With the next one, hopefully that’ll happen more quickly.

“It’s been 19 years, and you do see comets that have interesting trajectories that then turn out to be from our solar system – from the Oort Cloud, 40,000-60,000 times as far from the sun as we are.

“Sometimes comets coming from that that can look like they’re coming from outside the solar system, so there was a certain degree of caution.”

“What we’re hoping for is not to do anything different,” said Professor Fitzsimmons. “Astronomers around the world threw everything at it.

“But what we’d really like is more warning. More time means more data, and more ability to figure out what we want to learn.”

Spotting another object from outside our solar system will be just as interesting as the first one: going from having seen one visitor to two means that we can start trying to understand how typical or strange Oumuamua is.

“What would be great would be to find another one of these objects where we can say, ‘yes, this object came from this particular star or particular region’,” said Professor Fitzsimmons. “At the moment the only limit we’ve got is an upper limit of about 10 billion years – because when our universe started, the materials weren’t around to form a solid body like this.”

“There’s definitely going to be a lot more work to be done,” says Dr Bannister. The rock is still being watched as it leaves the solar system, and in useful ways – by tracking its trajectory as it leaves, we can learn more about the path it might have come in on.

“It’s too far away now; it can just about be detected by the best telescopes we’ve got,” said Professor Fitzsimmons. “The important thing is for us to be ready for the next one.

“And it might take a few years for the next one to be detected, but the UK is already part of a project building the next-generation survey telescope down in Chile – when that gets finished we’re hoping for one a year.”

Until then, researchers will keep looking through the detailed and extensive data that has been generated about Oumuamua. We might not know everything until well into next year, when more data becomes available.

The object is very thin and very long – just what you’d design for long-distance space travel – and appears to be taking a strange trajectory. Those strange characteristics have led the Breakthrough Listen project, supported by Stephen Hawking, to point telescopes at Oumuamua and see if any radio transmissions can be heard.

There are enough surprises about the rock already without it being an alien object said Professor Fitzsimmons. And besides, strange though it is, Oumuamua does at least look like what you’d expect to have been created in the violent beginnings of a solar system like ours.

“If you’ve got a radio telescope why not do that?” he says when asked about the excitement around Oumuamua’s potential alien owners. “However, we expect these things to exist, because we expect such things to be flung out of all solar systems when they form planets.

“So we expect these things out there. And looking at this object, the first object that’s been detected, it has appearances of these natural objects that we’d expect from another star – this looks exactly what we’d expect.”

Comments

Space

India shoots down satellite, becomes ‘space superpower’

Indian Prime Minister Narendra Modi has claimed his forces shot down a low-earth satellite in a pre-planned test. Such capabilities raise fears of a weaponization of space at a time of rising tension with Pakistan.

Indian Prime Minister Narendra Modi said on Wednesday that his country’s forces had shot down a low-orbit satellite as part of a test exercise.

Modi said he was proud of his scientists and congratulated those behind the mission. He said the exercise proved India had become a “space superpower,” bringing it in line with the US, Russia and China.

Although Modi said the test exercise, deemed “Mission Shakti” (Hindi for “power”), was not aimed at any one country, the announcement could inflame tensions with Pakistan just days ahead of a crucial election.

Pakinstan responded by urging international action against military threats in space.

“Space is the common heritage of mankind and every nation has the responsibility to avoid actions which can lead to the militarization of this arena,” Pakistan’s foreign ministry said in a statement.

Prime Minister Modi was careful to point out that India opposes the weaponization of space, emphasizing that Wednesday’s test did not violate international law.

Indian space expert Ajay Lele underscored Modi’s claim by saying: “India is not placing weapons in space. A ground-based missile defense interceptor system was used to destroy the satellite. If some country or adversary places a satellite for intelligence or for troubling India, India now has the capability to remove such an irritant.”

Modi praised the effort on Twitter, saying it was important because it was an entirely indigenous effort. India has an ambitious space program, having launched probes to the moon and Mars, as well as unveiling plans for a manned space mission by 2022.

Polls are due to open in Indian elections in just days, with the vote lasting six weeks. Modi’s Bharatiya Janata Party is facing a challenge from opposition leader Rahul Gandhi’s Congress party. The nationalist leader crushed the Congress party at the last general election in 2014.

Analysts said the latest speech fell in line with Modi’s campaign message so far, in which he has presented aspirational goals for India. Modi was quoted as saying “I dream of an India which can think two steps ahead. I dream of an India that is completely self-reliant in every possible way.”

Tensions between India and Pakistan have escalated in recent months, after a militant attack killed 40 policemen in Indian-controlled Kashmir in February. Islamabad denied it was behind the attack, but India responded with a cross-border air strike against what it said was a militant training camp.

Pakistan returned fire with its own air strikes, and by shooting down an Indian plane over Kashmir. The pilot was captured and later released.

Since then, Pakistan Prime Minister Imran Khan has offered to talk with Modi over the issue. However, Pakistan has accused the Hindu right-wing leader of capitalizing on the tensions for political gain.

Source www.dw.com

Continue Reading

Space

Astronomer manages to photograph a US experimental ship Boeing X-37B in the orbit of the Earth

Astronomer and professional photographer Ralf Vandebergh took photographs of the unmanned device while moving 300 kilometers up. Little is known of this classified project, initiated by NASA and currently addressed by Boeing and the United States Department of Defense (DARPA).

US experimental ship Boeing X-37B

The raw and processed images released by the Dutch astronomer Ralf Vandebergh.

A Dutch astronomer specializing in satellite monitoring captured the first images of the mysterious spacecraft Boeing X-37B, which is believed to hold the future of the US space program, orbiting the Earth.

Ralf Vandebergh, who is dedicated to taking pictures of planets and satellites from his base in Nijswiller, many of which have been used officially by NASA, published his find last week on his Twitter account.

There you can see the raw and processed image of the Boeing X-37B, an unmanned vehicle that would be testing systems for a new space shuttle, orbiting the earth at about 300 kilometers altitude on a mission called OTV-5 (Orbital Test Vehicle, or Orbital Test Vehicle).

The astronomer had been trying to take a picture of the X-37B, of which little is really known, for months and finally managed to detect its trajectory in May.

Preparing the photo, taken with an ALCCD 5L-11 mono CMOS and 5-inch F / 4.8 telescope, required a little more time.

«When I tried to observe it again in mid-June, it did not fulfill the trajectory and the expected time. Apparently, he had maneuvered into another orbit. Thanks to the amateur network of satellite observers, it was quickly found again and I was able to take the images on June 30 and July 2, “Vandebergh explained.

Boeing X-37B

A Boieng X-37B, the advanced new American space vehicle (US Air Force).

Although the images of the small spaceship are blurred, they have exceeded Vandebergh’s expectations: “We can recognize a bit of the nose, cargo area and tail of this mini-ferry, even with some details”.

Unknown objective

The OTV-5 mission ( the fifth of its kind ) of this X-37B began on September 7, 2017, after being launched by a Falcon 9 rocket from SpaceX from the Kennedy Space Center (KSC) in Florida, United States.

Its role and objectives are classified and little is known about its real capabilities, although it is believed that it would be collecting data, information, and intelligence, in addition to testing numerous equipment and components.

It is also not known when this mission that will take almost 700 days will end. The last X-37B (OTV-4) landed at the KSC on May 8, 2017, after 718 days orbiting, and it is expected that the OTV-6 will be launched sometime in 2019.

Source: Live Science

Continue Reading

Space

Opening Up the Moon: Q&A with ‘Moon Rush’ Author Leonard David

Humanity is poised to take another giant leap.

The moon is back in vogue.

The United States aims to return astronauts to the lunar surface by 2024, and then build up a long-term, sustainable presence on Earth’s nearest neighbor. The European Space Agency has repeatedly stressed a desire to establish a “moon village” in the near future, and China has crewed lunar ambitions as well.

And then there’s the private sector. Companies such as Blue Origin, Moon Express and Astrobotic are building landers to deliver payloads to the lunar surface. Before too much longer, such craft may carry mining robots that first test, and then exploit, lunar resources such as water ice, which appears to be plentiful on the floors of permanently shadowed polar craters.

And, in case you hadn’t heard, SpaceX is building a giant spaceship to ferry people to and from the moon, Mars and other solar system destinations.

Author (and longtime Space.com contributor and columnist) Leonard David looks at these coming developments and much more in his new book “Moon Rush: The New Space Race,” which was published this week by National Geographic.

Space.com recently caught up with David to talk about the book and the future of lunar exploration.

Leonard David’s book “Moon Rush” was published by National Geographic on May 7, 2019.

Space.com: People have talked about returning humans to the moon for decades now, since the end of the Apollo program in the early 1970s, but it still hasn’t happened. Is there something different about this moment? Or do you think the momentum we see building will stall? 

Leonard David: In some ways, I’m too old and cranky, and it reminds me of other things that have happened in my lifetime, when the moon was in vogue and the program got curtailed. I lived through all the Apollo landings, and, as you know, there were a lot of other plans beyond Apollo 17. We would’ve gotten a lot bolder — more pinpoint landings on a lot of different parts of the moon.

But I do give credit to the Trump Administration, particularly to the Space Council being re-established. I think that’s the new twist in this story — that council and the people that are on it, trying to help guide the administration to make a space program that can be stood up and withstand the test of time instead of falling apart.

Again, I’ve seen this before, where you get a lot of momentum going and then the monies never arrive, and things start falling apart. Without constancy of purpose, we will relinquish our goal of returning humans to the moon, and other countries are going to fill that void.

Space.com: About those other countries: Apollo was driven largely by a space race with the Soviet Union. Do you see something similar happening today, even if it’s not so overt, with China or other nations?

David: I’ve kind of convinced myself that it’s a little bit of a low-latency Sputnik effect. We’ve got all the makings of a rivalry with other countries, China being on top of the list. And I do think they have a multifaceted program that we haven’t focused on. They may actually have a quite capable space-station program, as well as a moon-landing program. They’re on the far side of the moon with a probe, and they’re going to perhaps launch a [lunar] sample-return mission at the end of the year, depending on how the next Long March 5 launch goes, coming up in July.

It does seem to me to have all the makings of some kind of space race that we’re not really cognizant of. [U.S. Vice President Mike] Pence has said “space race,” so it’s becoming part of the terminology of why we’re going back to the moon.

The other thing is, the idea that the European Space Agency is still involved with a “moon village” and opening that up to other nations is interesting, as well as us building the Lunar Gateway, if that becomes a real program. They try to subdivide that into international involvement — kind of a mini-International Space Station.

So, you put all those pieces together — I don’t know. I smell space race.

Space.com: And you’ve also got all the private companies involved now. 

David: Exactly. When we say “space race,” there are these companies now, too, with private entrepreneurs. The Israeli lander [Beresheet] crashed, but it does show us what could be forthcoming from a lot of private companies and groups.

But I do think that with that come the lawyers. [There will be] different types of governance that are going to be involved on the moon, and the lawyers are already there, sniffing around the craters. I’m not sure we know yet what is really going to happen with the legal aspect of multiple nations going, particularly when the moon is becoming carved up into projected bases. There are certain points on the moon where you want to be, and you want to be there first, before anybody else.

Space.com: Yeah, that’s going to be tricky. There’s a lot of talk about mining lunar resources — not just water ice, but also maybe minerals, and perhaps even helium-3. And if there really are billions and billions of dollars to be made there, then there are going to be lots of fights about who owns what. Is it going to be another land rush? We’re going to see that play out.

David: That’s what I think. You can see that there’s going to be tension; it almost seems like “We’re going to do whatever we want to do and then ask for forgiveness later.”

We’ve seen this before — claim jumpers and whatever — when you go back in history.

Space.com: So, with all of this going on, do you see something big happening with lunar exploration in the next 10 to 20 years?

David: I do. I think some of it’s going to depend on what we find there with the first sorties of humans and more robotic exploration. This lunar ice question is questionable; we’re not sure what we’re dealing with there. We’re not sure what the consistency is, how hard it will be to drag out of the bottom of craters that are ultracold. Can you do that economically?

So, we need a lot more data. If you’re trying to predicate the whole economic value of the moon, you better know what you’re going to go and dig out.

And there’s one thing that’s lurking — I kind of touched on it, but I wish would’ve written more about it — and that’s the military utility of the moon. I think that’s a sleeper thing. You can see even the generals starting to talk about cislunar space. So, this is another higher ground than where we have been in the past, and now we’re going to have cislunar things that the military is very interested in. I think that’s another one that’s coming that we’ll have to keep an eye on.

And then you get into — let’s say you do have an economic windfall on the moon. It’s to a country’s benefit to protect it — make sure nobody tampers with anything. That has all the makings of the conflicts we get down here on Earth.

Space.com: Can we take any lessons about this next giant leap from Apollo? Apollo was so long ago now, it’s almost out of living memory. And what we want to do on the moon next is very different — go and stay, not just plant flags and leave footprints. 

David: Unfortunately, as the astronauts die — and these ancient astronauts are dropping; there are only a handful left — the experience of actually being there is sort of getting lost.

A lot of people don’t remember Apollo. So, there’s an issue of recalling all the things that were actually accomplished. Not just planting flags — setting up instruments, and what kind of data was accumulated, and how hard that environment was to work in, particularly the dust. The dust issue is the one that’s always held out as, “This is dangerous.” There are ways to mitigate it; people have some ideas. I think new technologies will allow us to counter those kinds of issues.

[Apollo 17 astronaut Harrison] “Jack” Schmitt is a great example. He’s trying to go back and document every footstep he took from a geological perspective. He’s trying to document the entire benefit of him, as a geologist, going there. And memories are going to fade.

You look at some of the problems we’re going to have in trying to establish an economic foothold on the moon; the drawings are cheap. People have a lot of PowerPoints [presentations], how it’s going to look. But doing experiments here on Earth and then thinking that’s the way it’s going to work on the moon — it’s probably not going to happen. You’re going to have to go to the moon and figure out, “Well, that technique does not work.” You have to go there and try out stuff.

Space.com: And lots of the tech we’ll test out there will help us push even farther out. NASA stresses that the moon is a stepping-stone to the ultimate destination for people — Mars. 

David: I’m big on the stepping-stone thing. The Mercury and Gemini missions were all stepping-stones to proving out Apollo technology. So, I do see this lunar outpost as something important to deep-space habitation.

To me, the stepping-stones are very critical in this. NASA needs a steppingstone program, because they’re not ready. We’ve been in low-Earth orbit so long, we’ve lost that feeling, that moon feeling, how to pull off deep-space exploration. Testing the hardware. And we’re still learning about the human body, thanks to the space station program.

But the idea that the moon is a “been there, done that” world is flat wrong. We haven’t been to that many places on the moon.

I look at it like Seward’s Folly, when we purchased Alaska. That was very contentious in Congress at the time, why we were spending that much money. But we didn’t know what that wilderness was going to provide. The surprises came later, and that was a windfall for the country instead of some folly. So, maybe that’s what the moon may represent — something like wilderness that we’re not quite sure what’s there yet, and we need to go there and find out, using humans and robots.

We’re going to find things on the moon that will surprise us. I’m ready to be surprised.

Space.com: Is there anything else you’d like to mention?

David:I hope the book stirs up conversation. Anytime you write these things, you want people to walk away with maybe more questions than they had going in.

Another thing is the ethics of it all. You’ve got ethics at some level here on the law side, with who’s going to be where and how we can operate together on the moon. Are we all going to hold hands, or will there be claim jumpers? That kind of stuff.

And then you’ve got some people — it didn’t wind up in the book, but I wrote it all — some of the advertising people want to do things with the moon. I’ve seen some pretty wild ideas — you know, carving out parts of the moon to make a logo so everybody can see it on Earth. That’s the kind of thing that makes people in the audience wince when you even bring it up.

And then there’s the whole preservation of the moon sites. If you really think, and I do, that tourists will be going to the moon in the future, it’d be nice to visit the Apollo 11 or 17 [landing sites] or whatever, and use those as part of the tourist campaign. There’s a pretty good amount of work going on about making the moon a historical site and trying to preserve that for future visitors.

You can learn more about “Moon Rush,” and purchase the book, via National Geographic. The book is also available on Amazon.com.

Source www.space.com

Continue Reading

Trending