Connect with us

Space

Oumuamua First alien object to visit our solar system is wrapped in strange organic coat

ANDREW GRIFFIN

‘It was the opposite of what I was expecting we might see’

The first ever interstellar visitor to our solar system is wrapped in a layer of organic insulation, scientists have said.

Oumuamua has enthralled astronomers and the public since it flew through the solar system in October.

As the first alien rock to travel here from another star, it was immediately recognised as highly unusual – but as scientists learn more about the object, they are discovering how strange it actually is.

Its strangeness has even led to suggestions it could be an alien artefact, rather than just an incredibly abnormal natural object.

Very little is known about what Oumuamua is, where it came from, and what it is made up of. Scientists had relatively little time to study the object as it passed through our solar system, and they are continuing to analyse the data that was obtained.

Before the rock arrived, scientists had expected that visitors of its kind would look like comets as they flew through the solar system. Such items would be made up of ice that would leave a visible stream behind them as they travelled past hot stars, they suggested.

But when Oumuamua flew past, no such activity was detected, despite flying close to the sun on its journey.

Now scientists taking part in different studies have released detailed findings on what the rock looks like and what it might be made of.

While it is probably an icy body as expected, it appears to be wrapped in an organic coat that shields the frozen water inside from being hit by the sun, according to the new research.

“In the end this was a nice result because we’ve expected all along that the majority of objects that would visit our solar system would be icy in nature,” said Alan Fitzsimmons from Queen’s University Belfast and the lead author of one of two major new studies into Oumuamua.

“It has been a puzzle that this thing looked like a big lump of rock.

“Our study says that this object could well be icy in nature but we didn’t detect that ice due to the fact it’s been baked by energetic radiation between the stars for hundreds of millions of years, or even billions of years.”

It is not certain that Oumuamua has any ice at all – the conclusion of Professor Fitzsimmons’ work is only that it can’t be ruled out. But that is because it is wrapped by its strange organic coat, and scientists can only see the very thinnest layer at the top of the object.

The coat was examined by using spectroscopy, which looks at the light being reflected from its surface and splits it down into its wavelengths. By looking at those measurements, scientists can work out what the object might be composed of.

“What we didn’t see is the signatures of the rocks you’d usually find on Earth, or you might find on the inner asteroid belt surrounding our sun,” Professor Fitzsimmons said.

It appeared red, but when looked at through infrared light it became more grey in colour. That was expected – it is what would normally come back from icy objects in our own solar system – but there did not actually appear to be any ice water coming off the surface.

Normally, ice is expected fall off such an object as it flies by the sun and the ice is warmed, forming a miniature comet.

“Looking at it we realised it had been predicted that icier objects exposed to interstellar space should naturally form a thick crust around themselves, said Professor Fitzsimmons.

“When we crunched the numbers we found that this crust should insulate the interior of the object so that if there were any ices inside it, it wouldn’t change the form.”

Scientists had long expected that we are sometimes visited by such rocks, thrown from elsewhere in the universe into our solar system.

We know that significant numbers of comets and asteroids were thrown out of our solar system when it was formed, and so can reasonably assume that the same thing happened in other planetary systems.

But they are difficult to spot since they are so dark, and none had actually been seen until now, marking an unprecedented breakthrough.

“In some ways we had expected these things for some time,” said Michele Bannister, also from Queen’s University Belfast and the author of another study of the strange rock.

“Our own solar system has ejected millions of very small rocky bodies,and so we should expect that others do the same.”

Both of the new studies attempted to understand how the rock looks and what exactly it might be made of. Professor Fitzsimmons used spectroscopy and thermal modelling to try to understand the rock’s composition, while Dr Bannister’s research observed the colour of Oumuamua and used that to try to discover how it looked.

Studying the rock also gives a unique opportunity to understand how other stars formed and how objects might cope with the harsh environment of space, by giving us a direct look at something that has endured it.

The work was destined to find something of interest either way, since the rock is such a strange visitor and is very old. “It’s travelled for millions or billions of years – it could be older than our solar system,” said Dr Bannister.

The work to find what colour it is, for instance, found that the rock appeared to be red. But the exact kind of red – which could indicate what it is made of – appears to vary, with some initial observations suggesting a dark colour while others showed it being more neutral.

Those neutral colours were largely in line with some of the objects we see in our own solar system.

“It’s come from a very long way away, but it looks very familiar,” said Dr Bannister. “It was the opposite of what I was expecting we might see.”

Dr Bannister has been working on a project called the Outer Solar System Origins Survey. That work uses telescopes to measure the colours of objects in the distant reaches of our solar system, and has developed techniques to help understand what those far away rocks might look like – difficult, when they are so dark and far away that little light comes back.

So when Oumuamua flew past, Dr Bannister and her colleagues looked to do the same thing for this rock, and “see if we can put this object in context with this really well-characterised set of objects”. They began observations soon after it was first detected.

That was doubly important because the trajectory that the rock was coming towards us from meant that we did not actually see it until it had gone past the Earth.

So there was a rapid effort to turn all the facilities that might help to look at it and learn as much as possible before it was too distant.

Scientists hope they can spot the next object quicker, after waiting 19 years for this one.

Oumuamua was first spotted on 19 October, by the Pan-STARRS project that uses a range of different technologies to observe the sky. Scientists realised very quickly that it was both an unprecedented visit from outside the solar system and that they would have very little time to get a look at it before it disappeared, meaning they rushed to learn as much about it as they could.

“It took a few days for everyone to be convinced that the orbit truly was from outside the solar system,” said Dr Bannister. “With the next one, hopefully that’ll happen more quickly.

“It’s been 19 years, and you do see comets that have interesting trajectories that then turn out to be from our solar system – from the Oort Cloud, 40,000-60,000 times as far from the sun as we are.

“Sometimes comets coming from that that can look like they’re coming from outside the solar system, so there was a certain degree of caution.”

“What we’re hoping for is not to do anything different,” said Professor Fitzsimmons. “Astronomers around the world threw everything at it.

“But what we’d really like is more warning. More time means more data, and more ability to figure out what we want to learn.”

Spotting another object from outside our solar system will be just as interesting as the first one: going from having seen one visitor to two means that we can start trying to understand how typical or strange Oumuamua is.

“What would be great would be to find another one of these objects where we can say, ‘yes, this object came from this particular star or particular region’,” said Professor Fitzsimmons. “At the moment the only limit we’ve got is an upper limit of about 10 billion years – because when our universe started, the materials weren’t around to form a solid body like this.”

“There’s definitely going to be a lot more work to be done,” says Dr Bannister. The rock is still being watched as it leaves the solar system, and in useful ways – by tracking its trajectory as it leaves, we can learn more about the path it might have come in on.

“It’s too far away now; it can just about be detected by the best telescopes we’ve got,” said Professor Fitzsimmons. “The important thing is for us to be ready for the next one.

“And it might take a few years for the next one to be detected, but the UK is already part of a project building the next-generation survey telescope down in Chile – when that gets finished we’re hoping for one a year.”

Until then, researchers will keep looking through the detailed and extensive data that has been generated about Oumuamua. We might not know everything until well into next year, when more data becomes available.

The object is very thin and very long – just what you’d design for long-distance space travel – and appears to be taking a strange trajectory. Those strange characteristics have led the Breakthrough Listen project, supported by Stephen Hawking, to point telescopes at Oumuamua and see if any radio transmissions can be heard.

There are enough surprises about the rock already without it being an alien object said Professor Fitzsimmons. And besides, strange though it is, Oumuamua does at least look like what you’d expect to have been created in the violent beginnings of a solar system like ours.

“If you’ve got a radio telescope why not do that?” he says when asked about the excitement around Oumuamua’s potential alien owners. “However, we expect these things to exist, because we expect such things to be flung out of all solar systems when they form planets.

“So we expect these things out there. And looking at this object, the first object that’s been detected, it has appearances of these natural objects that we’d expect from another star – this looks exactly what we’d expect.”

Continue Reading
Advertisement
Comments

Space

‘ALIEN megastructure’ deep in space stuns scientists by suddenly plunging into DARKNESS

Astronomers have been watching the “megastructure” star – officially known as KIC 8462852 – as it is known for bizarrely dimming.

It is known as the alien megastructure due to theories the dimming might be down to a large spaceship or object orbiting the star.

While scientists remain unconvinced by this idea, the object – also known as Tabby’s Star – still has them baffled.

KIC 8462852 is around 1,280 light years from Earth and is currently being monitored by the Kepler space telescope.

Astronomers have this week recorded the star’s largest dimming event to date.

Tabby’s Star starting dimming on March 16, before lighting up again, and then resumed dimming on March 26.

Tabby’s Star starting dimming on March 16, before lighting up again, and then resumed dimming on March 26.Scientists said this is the “deepest dip” since they started monitoring the so-called alien megastructure – getting about 10% darker than usual.

The star has previously been dubbed the “most mysterious” in the universe.

Mystery still surrounded why the star is blinking, whether it is an alien megastructure, planets orbiting the star, or a cloud of dust.

TWITTERTABBY’S STAR: The strange object dimmed to its darkest to date this week

DIMMING: Tabby’s Star is known to get darker and brighter at random

Astronomer Tabetha Boyajian, for whom the star is named, revealed the latest dimming on Twitter.The assistant professor of Astrophysics at Louisiana State University posted it was the “deepest dip detected”.She remains uncertain as to what is causing the dimming, but space watchers around the world are keeping tabs on Tabby’s Star.NASA’s Kepler space telescope focuses on watching dimming stars since it is a way to uncover new planets.

Stars dim when planets orbiting the stars pass in front of them, causing regular dimming events.

The “alien megastructure” is unusual as the star is totally unpredictable in its darkening – and sometimes getting brighter.

This is what has led to theories about alien space ships potentially visiting the star as a fuel source.

Previously, Professor Boyajian said: “Dust is most likely the reason why the star’s light appears to dim and brighten.

“The new data shows that different colours of light are being blocked at different intensities.

“Therefore, whatever is passing between us and the star is not opaque, as would be expected from a planet or alien megastructure.”

Source

Continue Reading

Space

26 pictures will make you re-evaluate your entire existence

Most of the people on Earth are completely unaware of everything that’s around us. When you look at the night sky, you see the moon, vague reflection of some of our planets and countless stars that have captured the imagination of people who lived on Earth for tens of thousands of years.

Sometimes, we need to slow down the pace by which we live every single day and reconsider where we are as humans.

These 30 mind-bending images will make you REEVALUATE how you look at our planet, the solar system, and the universe in general.

Lets’s start of with the basics. This here is Earth. Did you know that our planet revolves around its own axis; it orbits the sun, the sun moves through space at a staggering 792,000 kilometers per hour? But there’s a bigger picture beyond Earth.

1. This is the Earth! This is where you live.

2. And this is where you live in your neighborhood, the solar system.

And this is where you live in your neighborhood, the solar system.

3. Here’s the distance, to scale, between the Earth and the moon. Doesn’t look too far, does it?

Here's the distance, to scale, between the Earth and the moon. Doesn't look too far, does it?

4. THINK AGAIN. Inside that distance you can fit every planet in our solar system, nice and neatly.

THINK AGAIN. Inside that distance you can fit every planet in our solar system, nice and neatly.

5. But let’s talk about planets. That little green smudge is North America on Jupiter.

6. And here’s the size of Earth (well, six Earths) compared with Saturn:

And here's the size of Earth (well, six Earths) compared with Saturn:

7. And just for good measure, here’s what Saturn’s rings would look like if they were around Earth:

And just for good measure, here's what Saturn's rings would look like if they were around Earth:

8. This right here is a comet. We just landed a probe on one of those bad boys. Here’s what one looks like compared with Los Angeles:

This right here is a comet. We just landed a probe on one of those bad boys. Here's what one looks like compared with Los Angeles:

9. But that’s nothing compared to our sun. Just remember:

But that's nothing compared to our sun. Just remember:

10. Here’s you from the moon:

Here's you from the moon:

NASA

11. Here’s you from Mars:

Here's you from Mars:

NASA

12. Here’s you from just behind Saturn’s rings:

Here's you from just behind Saturn's rings:

NASA

13. And here’s you from just beyond Neptune, 4 billion miles away.

And here's you from just beyond Neptune, 4 billion miles away.

NASA

To paraphrase Carl Sagan, everyone and everything you have ever known exists on that little speck.

14. Let’s step back a bit. Here’s the size of Earth compared with the size of our sun. Terrifying, right?

Let's step back a bit. Here's the size of Earth compared with the size of our sun. Terrifying, right?

The sun doesn’t even fit in the image.

15. And here’s that same sun from the surface of Mars:

And here's that same sun from the surface of Mars:

NASA

16. But that’s nothing. Again, as Carl once mused, there are more stars in space than there are grains of sand on every beach on Earth:

But that's nothing. Again, as Carl once mused, there are more stars in space than there are grains of sand on every beach on Earth:

17. Which means that there are ones much, much bigger than little wimpy sun. Just look at how tiny and insignificant our sun is:

Which means that there are ones much, much bigger than little wimpy sun. Just look at how tiny and insignificant our sun is:

Our sun probably gets its lunch money stolen.

18. Here’s another look. The biggest star, VY Canis Majoris, is 1,000,000,000 times bigger than our sun:

26 Pictures Will Make You Re-Evaluate Your Entire Existence

………

19. But none of those compares to the size of a galaxy. In fact, if you shrank the sun down to the size of a white blood cell and shrunk the Milky Way galaxy down using the same scale, the Milky Way would be the size of the United States:

But none of those compares to the size of a galaxy. In fact, if you shrank the sun down to the size of a white blood cell and shrunk the Milky Way galaxy down using the same scale, the Milky Way would be the size of the United States:

20. That’s because the Milky Way galaxy is huge. This is where you live inside there:

21. But this is all you ever see:

But this is all you ever see:

(That’s not a picture of the Milky Way, but you get the idea.)

22. But even our galaxy is a little runt compared with some others. Here’s the Milky Way compared to IC 1011, 350 million light years away from Earth:

But even our galaxy is a little runt compared with some others. Here's the Milky Way compared to IC 1011, 350 million light years away from Earth:

Just THINK about all that could be inside there.

23. But let’s think bigger. In JUST this picture taken by the Hubble telescope, there are thousands and thousands of galaxies, each containing millions of stars, each with their own planets.

But let's think bigger. In JUST this picture taken by the Hubble telescope, there are thousands and thousands of galaxies, each containing millions of stars, each with their own planets.

24. Here’s one of the galaxies pictured, UDF 423. This galaxy is 10 BILLION light years away. When you look at this picture, you are looking billions of years into the past.

Here's one of the galaxies pictured, UDF 423. This galaxy is 10 BILLION light years away. When you look at this picture, you are looking billions of years into the past.

Some of the other galaxies are thought to have formed only a few hundred million years AFTER the Big Bang.

25. And just keep this in mind — that’s a picture of a very small, small part of the universe. It’s just an insignificant fraction of the night sky.

And just keep this in mind — that's a picture of a very small, small part of the universe. It's just an insignificant fraction of the night sky.

26. And, you know, it’s pretty safe to assume that there are some black holes out there. Here’s the size of a black hole compared with Earth’s orbit, just to terrify you:

And, you know, it's pretty safe to assume that there are some black holes out there. Here's the size of a black hole compared with Earth's orbit, just to terrify you:

So if you’re ever feeling upset about your favorite show being canceled or the fact that they play Christmas music way too early — just remember…

This is your home.

This is your home.

This is what happens when you zoom out from your home to your solar system.

This is what happens when you zoom out from your home to your solar system.

And this is what happens when you zoom out farther…

And this is what happens when you zoom out farther...

And farther…

And farther...

Keep going…

Keep going...

Just a little bit farther…

Just a little bit farther...

Almost there…

Almost there...

And here it is. Here’s everything in the observable universe, and here’s your place in it. Just a tiny little ant in a giant jar.

And here it is. Here's everything in the observable universe, and here's your place in it. Just a tiny little ant in a giant jar.

Oh man.

Source www.buzzfeed.com

Continue Reading

Space

NASA’s Deep Impact Begins Hunt for Alien Worlds

NASA’s Deep Impact spacecraft is aiming its largest telescope at five stars in a search for alien (exosolar) planets as it enters its extended mission, called Epoxi.

Deep Impact made history when the mission team directed an impactor from the spacecraft into comet Tempel 1 on July 4, 2005. NASA recently extended the mission, redirecting the spacecraft for a flyby of comet Hartley 2 on Oct. 11, 2010.

As it cruises toward the comet, Deep Impact will observe five nearby stars with “transiting exosolar planets,” so named because the planet transits, or passes in front of, its star. The Epoxi team, led by University of Maryland astronomer Michael A’Hearn, directed the spacecraft to begin these observations Jan. 22. The planets were discovered earlier and are giant planets with massive atmospheres, like Jupiter in our solar system. They orbit their stars much closer than Earth does the sun, so they are hot and belong to the class of exosolar planets nicknamed “Hot Jupiters.”

However, these giant planets may not be alone. If there are other worlds around these stars, they might also transit the star and be discovered by the spacecraft. Deep Impact can even find planets that don’t transit, using a timing technique. Gravity from the unseen planets will pull on the transiting planets, altering their orbits and the timing of their transits.

“We’re on the hunt for planets down to the size of Earth, orbiting some of our closest neighboring stars,” said Epoxi Deputy Principal Investigator Drake Deming of NASA’s Goddard Space Flight Center in Greenbelt, Md. Epoxi is a combination of the names for the two extended mission components: the exosolar planet observations, called Extrasolar Planet Observations and Characterization (Epoch), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (Dixi). Goddard leads the Epoch component.

More than 200 exosolar planets have been discovered to date. Most of these are detected indirectly, by the gravitational pull they exert on their parent star. Directly observing exosolar planets by detecting the light reflected from them is very difficult, because a star’s brilliance obscures light coming from any planets orbiting it.

However, sometimes the orbit of an exosolar world is aligned so that it eclipses its star as seen from Earth. In these rare cases, called transits, light from that planet can be seen directly.

“When the planet appears next to its star, your telescope captures their combined light. When the planet passes behind its star, your telescope only sees light from the star. By subtracting light from just the star from the combined light, you are left with light from the planet,” said Deming, who is leading the search for exosolar worlds with Deep Impact. “We can analyze this light to discover what the atmospheres of these planets are like.”

Deep Impact will also look back to observe Earth in visible and infrared wavelengths, allowing comparisons with future discoveries of Earth-like planets around other stars.

Source

Continue Reading

Trending