Connect with us

Science & Technology

Origin of life needs a rethink, scientists argue

Scientists trying to unravel the mystery of life’s origins have been looking at it the wrong way, a new study argues.
Instead of trying to recreate the chemical building blocks that gave rise to life 3.7 billion years ago, scientists should use key differences in the way that living creatures store and process information, suggests new research detailed today (Dec. 11) in the Journal of the Royal Society Interface.
“In trying to explain how life came to exist, people have been fixated on a problem of chemistry, that bringing life into being is like baking a cake, that we have a set of ingredients and instructions to follow,” said study co-author Paul Davies, a theoretical physicist and astrobiologist at Arizona State University. “That approach is failing to capture the essence of what life is about.”
Living systems are uniquely characterized by two-way flows of information, both from the bottom up and the top down in terms of complexity, the scientists write in the article. For instance, bottom up would move from molecules to cells to whole creatures, while top down would flow the opposite way. The new perspective on life may reframe the way that scientists try to uncover the origin of life and hunt for strange new life forms on other planets.
“Right now, we’re focusing on searching for life that’s identical to us, with the same molecules,” said Chris McKay, an astrobiologist at the NASA Ames Research Center who was not involved in the study.
“Their approach potentially lays down a framework that allows us to consider other classes of organic molecules that could be the basis of life.”
For decades, scientists have tried to recreate the primordial events that gave rise to life on the planet. In the famous Miller-Urey experiments reported in 1953, scientists electrically charged a primordial soup of chemicals that mimicked the chemical makeup of the planet’s early oceans and found that several simple amino acids, the most primitive building blocks of life, formed as a result.
But since then, scientists aren’t much further along in understanding how simple amino acids could have eventually morphed into simple, and then complex, living beings.
Part of the problem is that there isn’t really a good definition of what life is, said Sara Walker, study co-author and an astrobiologist at Arizona State University.
“Usually the way we identify life on Earth is always by having DNA present in the organism,” Walker told LiveScience. “We don’t have a rigorous mathematical way of identifying it.”
Using a chemical definition of life  –  for instance, requiring DNA  –  may limit the hunt for extraterrestrial life, and it also may wrongly include nonliving systems, for instance, a petri dish full of self-replicating DNA, she said.
Walker’s team created a simple mathematical model to capture the transition from a nonliving to a living-breathing being. According to the researchers, all living things have one property that inanimate objects don’t: Information flows in two directions.
For instance, when a person touches a hot stove, the molecules in his hand sense heat, transmit that information to the brain, and the brain then tells the molecules of the hand to move. Such two-way information flow governs the behavior of simple and complex life forms alike, from the tiniest bacteria to the giant humpback whale. By contrast, if you put a cookie on the stove, the heat may burn the cookie, but the treat won’t do anything to respond.
Another hallmark of living beings is that they have different physical locations for storing and reading information. For instance, the alphabet of letters in DNA carries the instructions for life, but another part of the cell, called the ribosome, must translate those instructions into actions inside the cell, Davies told LiveScience.
(By this definition, computers, which store data on a hard drive and read it off using a central processing unit, would have the hallmarks of life, although that doesn’t mean they are alive per se, Walker said.)
The new model is still in its infancy and doesn’t yet point to new molecules that could have spawned life on other planets. But it lays out the behavior needed for a system needs to be considered living, Walker said.
“This is a manifesto,” said Davies. “It’s a call to arms and a way to say we’ve got to reorient and redefine the subject and look at it in a different way.”

Science & Technology

Japan has developed an inflatable scooter that weighs practically nothing

The University of Tokyo engineers have developed the Poimo inflatable electric scooter, which is created individually for each owner. It is enough to send your photo to the manufacturers – and a personal optimized model will be assembled for you.

The scooter is designed with a special program for the body size of a particular user and his specific fit. Moreover, each owner is free to make any changes to this model. If he makes any changes to the drawing, the program will automatically redesign the electric bike to maintain its strength, stability and controllability. When the model is finished and approved, it is handed over to the manufacturer.

Scooter Poimo

The scooter consists of seven separate inflatable sections that are constructed from durable fabric and sewn with straight stitch. It remains to add electronic components – in particular, a brushless motor and a lithium-ion battery. 

The finished electric scooter weighs about 9 kg and can travel at speeds up to 6 km / h (that is, slightly faster than a pedestrian). It can work for an hour on one charge.

This is how the current version of Poimo looks like in action:

Continue Reading

Science & Technology

Excerpts from Elon Musk’s speech at the Martian Society convention

Elon Musk’s comments with questions relayed from the Mars Society Membership by Dr. Robert Zubrin, James L. Burk, and Carie Fay. Following Elon’s 30 min time, Dr. Zubrin took additional questions. This special event was part of the 2020 Mars Society Virtual Convention from October 14-18, 2020.

About Starship Test Schedule:

– entering orbit – with a probability of 80% -90% will take place in 2021

– the probability of the return of the ship and the 1st stage in this flight is 50%

– test of refueling in orbit – 2022

– Starship lunar version – 2022 or 2023

– Starship flight to Mars – around 2024

The goal of the Starship is to build a self-sufficient settlement on Mars as quickly as possible. Musk does not rule out the possibility that this will not be achieved during his lifetime. According to his rough estimates, to create a self-sufficient city, it will be necessary to deliver 1 million tons of cargo, which corresponds to 4-5 million tons in a low Earth orbit. Modern single-use launch vehicles are capable of removing less than 1% of this value.

“Disposable launch vehicles are completely stupid. They are a waste of time. I think people need to stop wasting time on this. If you try to sell a disposable plane, you will be thrown out of the office. If you try to sell a disposable car, you will also be thrown out of the office. “

A series of questions and answers followed:

What is the best landing site on Mars?

– I’m not sure about that. But I can name the criteria. The first of these is latitude: most likely it will be in the northern hemisphere, far enough to the north to have water ice, but to still have enough sunlight.It also needs to be low to get the most benefit from atmospheric braking.

How do you prioritize mission priorities: research, infrastructure construction, and science?

– The first will be the construction of a fuel plant.

A question from a teenager who wants to become an engineer and robot maker with a dream to work at SpaceX: what is the most important education in order to become an engineer?

– There are many varieties of this profession: you can be an aerospace engineer, in the field of electronics, software, or a chemical engineer involved in creating safe production of fuels. I think physics is a good foundation for critical thinking.

Boring Company was originally conceived as a tunnel manufacturing firm on Mars?

– No. It was originally something of a joke. I thought tunnels were a good solution to reduce the traffic problem in cities and improve the quality of life by turning parking lots into green parks. To do this, you need to go to 3d [get away from the “flat” infrastructure – approx. per.]. I think tunnels are good for Mars too. But there you need a lot lighter equipment: you don’t care about mass on Earth, but you will have to take care of it a lot when going to Mars.

At Boring Company, have you learned a lot of technology that might come in handy on Mars?

– I think, yes.

Do you have any tips for young people who love Mars but don’t know how to participate in its settlement?

– I think any strong advocate of the need to conquer Mars matters. People often don’t even think about it. I often talk to people who don’t even know about it. Therefore, I consider it important for humanity and consciousness in general to bring a discussion about this to society. Talking about it with friends and acquaintances – I think this is what we should do. In my estimate, we will spend less than 1% of our efforts on Mars exploration, exactly less than healthcare, perhaps even less than cosmetics – this will be enough to make life multi-planetary. But this requires people to start talking about it 100 times more often. I think this is what really matters. [the entire cosmonautics of the world is $ 424 billion a year, while cosmetics is $ 532 billion, and tobacco production is $ 849 billion – approx. per.]

What’s the coolest part about Starship development?

– I think the coolest detail is the ability to work with a great group of engineers and come up with interesting solutions. I think the best thing is the opportunity to work with smart and creative people who come up with solutions that were not available before. This is a great reward.

What do you focus on when hiring, especially with regard to engineers?

“We’re looking for signs of exceptional ability. Or at the very least, striving to do exceptional things at SpaceX.

Are you planning to make a Mars-Earth communication system like Starlink?

– Yes, I think we will use a laser, probably launched into orbit, to avoid atmospheric diffraction. Thus, it will be a laser beam going from the orbit of the Earth to the orbit of Mars. And also relay satellites in solar orbit, since the laser beam cannot be sent through the Sun [when it is between Mars and Earth – approx. per.].

Can Starship be used for other destinations like Venus and other planets?

– Starship will be able to travel to any target in the solar system that has a solid surface when fuel depots appear. It is not the kind of transport that will take us to other stars, but when we become a multi-planetary species, we will create a demand for innovation in space travel that will ultimately lead us to interstellar travel.

Continue Reading

Science & Technology

Cern Scientists Plan an Impressive Experiment – They Will Come Into A Parallel Universe

Cern scientists are once again preparing to impress the entire planet and become the focus of discussions with the new experiment they are planning.

An experiment that, if it brings the fascinating result that scientists have in mind,  will change the way we think about the world , will take place in the next few days at the Large Hadron Collider, the European nuclear center, Geneva CERN Research.

The astonishingly LHC complex, the largest, most energetic elemental accelerator in the world,  will be “fired” for the first time to its highest energy levels, in an effort to detect – or even create – tiny black holes. 

If it succeeds, then, a completely new universe will be revealed – rewriting not only the books of physics, but also the books of philosophy! 

It is possible, however,  that gravity from our universe will “leak” into this parallel universe, as LHC scientists say. 

From the Higgs boson to dark matter and the parallel universe

According to the British Express, the experiment is sure to “trigger” the critics, who are worried about the LHC, many of whom warn that the elementary particle accelerator will mark the end of our universe, creating a of the black hole.

Nevertheless,  Geneva has remained … intact since 2008, when the LHC began its spectacular “work”.

The first scientists at the Large Hadron Collider proved the existence of the Higgs boson – a key building block of the universe – and the LHC appears to be on track to locate “dark matter” – a previously undetectable force now considered that it constitutes the majority of matter in the universe, being, in fact, the reason why the latter is constantly expanding and moving away. 

So next week’s experiment is considered to change the game. 

The truth is out there

Mir Faizal, one of three heads of the three natural groups behind the experiment, said: 

“Like many parallel sheets, which are two-dimensional objects (width and length) can exist in a third dimension (height) , so parallel universes can also exist in higher dimensions. We anticipate that gravity can leak into extra dimensions, and if that happens, then tiny black holes can be produced in the LHC. 

Normally, when people think of the multiverse, they think of the interpretation of quantum mechanics by many worlds, where every possibility is realized. This cannot be tested and so it is a philosophy and not a science. We do not mean this with parallel universes. What we mean is real universes, in extra dimensions. The truth is out there.”

Continue Reading
Advertisement

DO NOT MISS

Trending