Connect with us

Science & Technology

Opinion: Science Is Running Out of Things to Discover

John Horgan for National Geographic

The advancing age when Nobelists receive their prizes could suggest fewer breakthroughs are waiting to happen.

Call it confirmation bias, but I keep seeing signs that science—and especially fundamental physics, which seeks to discern the basic rules of reality—is running out of gas, just as I predicted in my 1996 book The End of Science.

The latest evidence is a “Correspondence” published today in the journal Nature. A group of six researchers, led by Santo Fortunato, professor of complex systems at Aalto University in Finland, points out that it is taking longer and longer for scientists to receive Nobel Prizes for their work.

The trend is weakest in prizes for physiology or medicine and strongest in physics. Prior to 1940, only 11 percent of physics prizes, 15 percent of chemistry prizes, and 24 percent of physiology or medicine prizes were awarded for work more than 20 years old. Since 1985, those percentages have risen to 60 percent, 52 percent, and 45 percent, respectively. If these trends continue, the Nature authors note, by the end of this century no one will live long enough to win a Nobel Prize, which cannot be awarded posthumously.

Graphic of nobel prizes showing the delay (in years) between discovery and award.

NG STAFF. SOURCE: F. BECATTINI ET AL., UNPUBLISHED PAPER

In their brief Nature letter, Fortunato and co-authors do not speculate on the larger significance of their data, except to say that they are concerned about the future of the Nobel Prizes. But in an unpublished paper called “The Nobel delay: A sign of the decline of Physics?” they suggest that the Nobel time lag “seems to confirm the common feeling of an increasing time needed to achieve new discoveries in basic natural sciences—a somewhat worrisome trend.”

This comment reminds me of an essay published in Nature a year ago, “After Einstein: Scientific genius is extinct.” The author, psychologist Dean Keith Simonton, suggested that scientists have become victims of their own success. “Our theories and instruments now probe the earliest seconds and farthest reaches of the universe,” he writes. Hence, scientists may produce no more “momentous leaps” but only “extensions of already-established, domain-specific expertise.” Or, as I wrote in The End of Science, “further research may yield no more great revelations or revolutions, but only incremental, diminishing returns.”

Needless to say, not all physicists accept this view—or the claim of Fortunato and co-authors that the Nobel time lag reported in Nature is a symptom of physics’ decline. The British astrophysicist Martin Rees spins the Nobel trend in the opposite direction, suggesting that it reflects “a growing backlog of potential winners.”

Rees conjectures that “there are more people than ever before whose achievements are up to the standard of most earlier winners.” But he concedes that “there is indeed perhaps a lull in particle physics.”

The recent discovery of the Higgs boson by the Large Hadron Collider (LHC) represents, paradoxically, both a triumph for particle physics and a sign of the field’s troubles. Peter Higgs and Francois Englert, who received the 2013 Nobel Prize in physics, predicted the existence of the Higgs boson—the fabled “God particle“—a half century ago.

The experimental evidence from the LHC that bears out their prediction stands as the capstone of the Standard Model of particle physics, which provides quantum accounts of the electroweak and strong nuclear forces governing the interactions of the known subatomic particles. But the Standard Model—often called the “theory of almost everything”—falls short of a full explanation of reality. For decades, physicists have sought to vault beyond it by proposing a host of unified theories, which assume deep connections between the electroweak and strong forces and even gravity. The most popular of these unified theories postulates that reality stems from infinitesimal strings wriggling in a hyperspace of nine or more dimensions.

But evidence—and hence Nobel recognition—for string theory and other unified theories remains elusive. Most recent Nobel Prizes in physics have instead recognized work that contributed to the conventional Standard Model and other preexisting theories rather than providing profound new insights into reality. For example, the 2003 and 1996 physics prizes honored research on superfluidity, a phenomenon first discovered in 1938.

I hope I’m wrong that the era of fundamental revelations is over, and there are grounds to argue I may be. In the late 1990s, for instance, two groups of astrophysicists discovered that the universe is expanding at an accelerating rate. The researchers won the 2011 Nobel Prize in physics for this totally unexpected finding, which hints that our understanding of the cosmos may indeed be radically incomplete.

Just last month, moreover, researchers announced that new observations of microwaves pervading the universe provide evidence of inflation, a dramatic theory of cosmic creation. Inflation theory holds that an instant after the big bang, our cosmos underwent a fantastically rapid, faster-than-light growth spurt. Inflation implies that our entire cosmos is just a tiny bubble in an oceanic “multiverse.”

But I remain skeptical of inflation. There are so many different versions of the theory that it can “predict” practically any observation, meaning that it doesn’t really predict anything at all. String theory suffers from the same problem. As for multiverse theories, all those hypothetical universes out there are unobservable by definition. It’s hard to imagine a better reason to think we may be running out of new things to discover than the fascination of physicists with these highly speculative ideas.

I would nonetheless be delighted if further observations provide enough evidence of inflation to impress the Nobel judges, who historically have had very high standards of evidence. Physicist Max Tegmark, a proponent of multiverse theories, thinks that inflation has a “good shot” at winning a Nobel.

If the Nobel Committee on physics does decides to award prizes for the invention of inflation, it shouldn’t dally. The theory was originally proposed more than 30 years ago, and its inventors, including Alan Guth and Andrei Linde—at ages 67 and 66, respectively—aren’t getting any younger.

John Horgan teaches at Stevens Institute of Technology and writes the Cross-Check blog for Scientific American. Follow him on twitter at @horganism.

Comments

Science & Technology

NTP nuclear rocket engine will take humans to Mars in just three months

Although the romance of the peaceful atom has subsided since the mid-1960s, the idea of ​​using nuclear reactors for “civilian” purposes is still regularly returned. The new nuclear rocket engine (NRM) will deliver a man to Mars much faster than is possible now.

The danger of cosmic radiation is much more serious than the risk of infection from an accident with such an engine. The most dangerous of all the constraining vectors for projects of sending people to other bodies in the solar system is cosmic radiation. Radiation from our star and galactic rays can seriously damage the health of the mission crew. Therefore, when planning flights to Mars, engineers and scientists try to reduce travel time as much as possible.

One promising way to get to the Red Planet in just three months could be a new NTP engine. Its concept was developed and submitted to NASA by Ultra Safe Nuclear Technologies ( USNC-Tech ) from Seattle, USA. The name of the unit is simply deciphered – Nuclear Thermal Propulsion ( NTP ), that is, “thermal nuclear power plant”. The novelty differs from its previously created or invented counterparts in the most secure design.

A key component of USNC’s development is mid – grade uranium fuel “pellets”. They contain 5% to 20% of the highly reactive isotope U- 235 coated with zirconium carbide ceramics. This degree of enrichment lies roughly halfway between the “civilian” nuclear power plants and the military. The proprietary ceramic coating technology makes the tablets incredibly resistant to mechanical damage and extreme temperatures.

Schematic diagram of a thermal nuclear rocket engine / © Wikipedia |  Tokono
Schematic diagram of a thermal nuclear rocket engine / © Wikipedia | Tokono

The company promises that their fuel elements are significantly superior in these parameters to those currently used at nuclear power plants. As a result, the engine will have a higher specific impulse with a lower degree of uranium enrichment than in earlier versions of NRE. In addition to the flight to Mars, among the goals of the ambitious project are other missions within the solar system. The perspectives of the concept will soon be considered by specialists from NASA and the US Department of Defense ( DoD ). Perhaps departments will even allow its commercial use by private companies.

Theoretically, NRE based on modern technologies can have a specific impulse (SR) seven times higher than that of chemical jet engines. And this is one of the key performance parameters. At the same time, unlike electric and plasma ones, the ID of a nuclear rocket engine is combined with high thrust. One of the limiting factors in the use of NRE, in addition to safety issues, are extremely high temperatures in the reactor core.

The higher the temperature of the gases flowing out of the engine, the more energy they have. And accordingly, they create traction. However, mankind has not yet come up with relatively inexpensive and safe materials that can withstand more than three thousand degrees Celsius without destruction. The solution created by USNC will operate at the limit of modern materials science (3000 ° C) and have a specific impulse twice that of the best liquid-propellant engines.

Tests of the first nuclear jet engine in 1967 / © NASA
Tests of the first nuclear jet engine in 1967 / © NASA

The official press release does not specify which working body will be used in NTP . Usually, in all NRE projects, the reactor core heats hydrogen, less often ammonia. But, since we are talking about a long-term mission, the creators could have chosen some other gas. Keeping liquid hydrogen on board for three months is no easy task. But you still need to invent something for the way back.

Continue Reading

Science & Technology

Scientist Peter Scott-Morgan is set to become “the world’s first complete cyborg”

Scientist and roboticist Peter Scott Morgan, who is using an advanced version of Stephen Hawking's communication system, built by Intel. INTEL

Two years ago scientist Peter Scott-Morgan was diagnosed with motor neuron disease, also known as Lou Gehrig’s disease, and today he is still fighting for a new life, not just for survival.

This October, Dr. Scott-Morgan is on track to become the world’s first full-fledged cyborg, potentially giving him more years of life.

The world’s first complete cyborg

It was in 2017 that Dr. Peter Scott-Morgan (a brilliant robotics writer, scientific writer, and talented speaker) was diagnosed with degenerative motor neuron disease that ultimately paralyzed his entire body except his eyes.

The diagnosis is understandably grim, especially considering that he has only two years to live, but he has not given up the fight.

Teaming up with world-class organizations with expertise in artificial intelligence, Dr. Scott-Morgan is transforming himself into what he calls “the world’s first fully fledged cyborg.”

“And when I say ‘Cyborg’, I mean not just that some kind of payment will be implanted in me, I mean that I will become the most advanced human cybernetic organism ever created on Earth for 13.8 billion years. My body and brain will be irreversibly changed, ”says Dr. Scott-Morgan.

What does it mean to be human

According to Dr. Scott-Morgan, he will become part robot and part living organism. Moreover, the change will not be one-time, but with subsequent updates.

“I have more updates in the process than Microsoft ,” says Dr. Scott-Morgan.

AI-powered creative expression

The cyborg artist is a great example of the power of human-AI collaboration. AI uses the data that make up Peter’s digital portrait ( articles, videos, images, and social media ) and is trained to recognize key ideas, experiences, and images.

Peter will introduce a theme, AI will suggest composition, and Peter will apply images to suggest style and mood. Peter will direct the AI ​​to render a new digital image that none of them could create alone.

A unique blend of AI and human, reflects Peter’s creative and emotional self – a critical aspect of what it means to be human.

Peter 2.0

This October, Dr. Scott-Morgan will undergo what he calls the latest procedure that will transform him into “Complete Cyborg”.

October 9 he tweeted a photo of himself, writing the following:

“This is my last post as Peter 1.0. Tomorrow I will trade my vote for potentially decades of life as we complete the last medical procedure for my transition to Full Cyborg, in the month that I was told statistically I would be dead. I am not dying, I am transforming. ! Oh, how I LOVE science !!! “.

Continue Reading

Science & Technology

Japan has developed an inflatable scooter that weighs practically nothing

The University of Tokyo engineers have developed the Poimo inflatable electric scooter, which is created individually for each owner. It is enough to send your photo to the manufacturers – and a personal optimized model will be assembled for you.

The scooter is designed with a special program for the body size of a particular user and his specific fit. Moreover, each owner is free to make any changes to this model. If he makes any changes to the drawing, the program will automatically redesign the electric bike to maintain its strength, stability and controllability. When the model is finished and approved, it is handed over to the manufacturer.

Scooter Poimo

The scooter consists of seven separate inflatable sections that are constructed from durable fabric and sewn with straight stitch. It remains to add electronic components – in particular, a brushless motor and a lithium-ion battery. 

The finished electric scooter weighs about 9 kg and can travel at speeds up to 6 km / h (that is, slightly faster than a pedestrian). It can work for an hour on one charge.

This is how the current version of Poimo looks like in action:

Continue Reading
Advertisement

DO NOT MISS

Trending