Connect with us

Space

Mysterious Magnetic Pulses at Midnight on Mars – and More

“The InSight fluxgate magnetometer has detected magnetic pulsations on the surface of Mars for the first time. The observations have implications to the wave sources in the induced magnetosphere and whether and how these waves can reach the surface.”

That type of report coming from your local police would cause some concern. Coming from the EPA or the military, it would be a cause for worry. Coming from Mars … it’s a mystery, but it’s definitely a sign of job security for space engineers. At the latest joint meeting of the European Planetary Science Congress and the American Astronomical Society, a NASA gave a presentation on findings by the Mars InSight lander, including the startling revelation that it has been detecting mysterious long pulsations at the Martian midnight. In addition, another presentation reveals that it found strange electrical signs that may be coming from a 2.5-mile-thick layer under the surface that just might be water. Finally, the InSight and its engineers are celebrating because the lander received an Emmy! Wait, what?

Artist depiction of InSight on the Martian surface (NASA/JPL)

“The nighttime continuous pulsations found by IFG are unexpected because they are distinct from what are typically observed on the Earth’s surface at the same local time. On the other hand, we have not found the Mars counterparts for many types of geomagnetic pulsations well known in Earth studies. We speculate that the observed magnetic pulsations by InSight to date are associated with fluctuations in the induced magnetotail and on the magnetospheric boundary. Under this scenario, the distinct field and plasma environment at Mars raises interesting questions about how these oscillations propagate through the magnetosphere and ionosphere and reach the surface.”

IFG is the InSight FluxGate, the magnetometer measuring the strength and variations of the surface magnetic field at the InSight landing site on the planet’s equator. The National Geographic story on the conference highlights the importance of InSight providing for the first time a surface analysis of Martian magnetism, which will help scientists determine why Mars lost its protective magnetic and perhaps reveal some warning signs as to if and when Earth might lose its own field. And why do these pulses happen at midnight?

National Geographic covered the second big story from InSight – it picked up magnetic signals from beneath the Martian surface that resemble those on Earth that indicate the presence of water … lots of water. That would bean that somewhere no deeper than 62 miles (100 km) is an aquifer or perhaps even a layer of water that can be drilled to from anywhere on Mars. Unfortunately, InSight’s drill only reaches 16 feet, so the first Martian well belongs to a future probe. If InSight is correct, it won’t need a diving rod.

What about the Emmy?

Oh, yeah. In a special presentation prior the big Emmy Awards show, the Academy of Television Arts & Sciences gave NASA the Outstanding Original Interactive Program award for its coverage of the Insight Lander’s entire life from conception to landing and beyond, using TV, social media and other methods to keep the world informed and involved with this exciting project.

When does the InSight show come on?

“Congrats to those who contributed to the news, web, education, television and social media coverage of this landing on the Red Planet.”

Does it sound like NASA Administrator Jim Bridenstine is more excited about the Emmy than InSight’s discovery of mysterious midnight magnetic pulses and a potential planet-wide water supply? Of course he is! InSight is never coming back to Earth so he gets to keep the statue in his office.

Way to go, InSight!

Source: Mysterious Universe

Comments

Space

An inconceivably ancient cosmic object was discovered

An international group of astronomers from the United States, Germany, China and Chile reported the discovery of a largest quasar called Poniua’ena, which in Hawaiian means “an invisible rotating source of creation surrounded by radiance.”

The object is located at a distance of about 30 billion light years, which corresponds to the age of the Universe at 710 million years. A preprint of the article, which will be published in the Astrophysical Journal Letters, is available on the arxiv website.

The light from the quasar J1007 + 2115 flew 13 billion years, however, due to the accelerated expansion of the Universe, its redshift is z = 7.515, which corresponds to the actual distance to it, equal to 29.3 billion light years. Astronomers see the object as it was in the era of reionization, when the first stars appeared, ionizing hydrogen atoms with their light.

Poniua’ena contains a supermassive black hole whose mass reaches 1.5 billion solar masses, making the quasar the largest object in the early Universe. According to Jinyi Yang, lead author of the work from the University of Arizona, this is the earliest object of such a monstrous size known to scientists.

Its existence poses a problem for theoretical models of the formation of supermassive black holes, according to which, J1007 + 2115 simply would not have time to grow in 710 million years if it had originally arisen as a result of the collapse of the star.

Instead, astronomers believe, a hundred million years after the Big Bang, there was already a black hole with a mass of 10 thousand Suns, which was formed as a result of direct gravitational collapse of clouds of cold hydrogen gas.

Poniua’ena is currently the second oldest quasar found to date. In 2018, the quasar J1342 + 0928 was discovered, which is two million years older than J1007 + 2115, but at the same time half as massive.

Continue Reading

Space

Wormholes. To anywhere in the universe in a minute

Wormholes or tunnels in the fabric of spacetime are terribly unstable. As soon as at least one photon hits them, the wormhole closes instantly. A new study suggests that the secret to a stable wormhole is in their form.

Wormholes, if they exist, will allow us to travel from point A to some extremely distant point B without worrying about travel time. The transition would be incredibly fast. Real cheat code of the universe. See a star for millions of light years? You could reach it in just a few minutes if you had a wormhole leading to it. No wonder this is a very popular science fiction theme.

But wormholes are not just a figment of our imagination, created to carve out all the boring scenes of interstellar travel (and this is centuries and millennia). We learned about them through Einstein’s general theory of relativity: matter and energy bend and deform the fabric of space-time, the curvature of which tells matter how to move.

Therefore, when it comes to wormholes, you just need to ask yourself: is it possible to deform space-time so that it overlaps itself, forming a tunnel between two distant points? The answer was given in the 1970s – yes.

Wormholes are entirely possible and not forbidden by the general theory of relativity. But the wormholes are very unstable, because, in essence, they consist of two black holes in contact with each other and forming a tunnel. That is, we are talking about points of infinite density, surrounded by areas known as the event horizon – one-sided space barriers. If you cross the event horizon of a black hole, you will never go back.

To solve this problem, the entrance to the wormhole must be outside the event horizon. Thus, you can cross the wormhole without touching the barrier. But as soon as you enter a wormhole located between huge masses, the gravity of your presence will distort the wormhole tunnel, collapsing it. Slammed shut, the tunnel will leave two lonely black holes, separated by a space in which the remains of your body will hang.

But it turns out there is a way to place the entrance to the wormhole away from the event horizon and make the tunnel stable enough for you to get through it. For this, material with a negative mass is needed. This is an ordinary mass, but with a minus sign. And if you put together enough negative mass in one place, you could use it to keep the wormhole open.

As far as we know, a substance with a negative mass does not exist. In any case, there is no evidence that it exists. Moreover, if it were, it would violate many laws of the Universe, such as inertia and conservation of momentum. For example, if you kicked a ball with a negative mass, it would fly backward. If you place an object with a negative mass next to an object with a positive mass, they will not be attracted. On the contrary, objects will repel each other, instantly accelerating.

Since negative mass seems like a myth, it can be assumed that wormholes are unlikely to exist in the universe. But the idea of ​​wormholes is based on the mathematics of the general theory of relativity – our current understanding of how gravity works. More precisely, our current, incomplete understanding of how gravity works.

We know that the general theory of relativity does not describe all the gravitational interactions in the universe. She gives in to strong gravity with a small body size. For example, before the bowels of black holes. To solve this problem, we need to turn to the quantum theory of gravity, which would combine our understanding of the world of subatomic particles with our broader understanding of gravity. But every time scientists try to put it together, everything just falls apart.

However, we have some clues on how quantum gravity can work, and we can understand wormholes. It is possible that a new and improved understanding of gravity will show that we do not need negative mass matter at all, and that stable, passable wormholes are real. A couple of theoreticians from Tehran University in Iran have published a new study of wormholes.

They applied some methods that allowed them to understand how quantum mechanics can change the standard general picture of relativity. Scientists have found that passable wormholes can exist without a substance with negative mass, but only if the entrance does not represent an ideal sphere, but is slightly elongated.

The results are interesting, but there is one snag. These hypothetical passable wormholes are tiny. Very tiny. Wormholes will be only 30% longer than Planck’s length – 1.6 x 10 ^ 35 meters. The traveler should be the same size. Yes, in addition, this microscopic traveler should fly at almost the speed of light. Despite emerging problems, the study opens a small crack, so to speak, for a look at the existence of wormholes, which can be expanded in the course of further research.

Continue Reading

Space

Scientists believe that Europa’s underground ocean is habitable: The secrets that Jupiter’s satellite hides

K. Retherford/Southwest Research Institute

The dream of Mankind is the existence of celestial bodies that can host life, initially in our own solar system as the Earth is considered that in the near future will not be able to sustain the growing population.

Scientists claim that Europa, the satellite of the planet Jupiter, has the necessary conditions for the development of life and characterize the large ocean’s underground ocean as “potentially habitable”.

When we say life development we mean organisms that are based on the “function” of carbon biochemistry.

This theory has been developed for several years and Europa, along with the planet Mars, is considered to be the two celestial bodies to which humanity could “escape”.

It is worth adding that the delicate atmosphere of Europa consists mainly of … oxygen!

Of course, living conditions will not be the same as on Earth, but they are considered to be “tolerable” for a start.

According to scientific observations, this vast expanse of water may have been able to develop and support the growth of microbes in the past, perhaps even in the present period.

Europa, with an ocean hidden beneath a thick ice shell that surrounds its surface, has long been considered a possible habitat for extraterrestrial life in our solar system, along with other candidates such as Mars and Saturn’s moon, Egelados. A new study presented Wednesday at a geo-scientific conference underscores Europa’s potential to develop life, even at the microbial level.

“We believe that the ocean of Europa may have been habitable early on when it was formed, because our models show that the composition of the ocean may have been only slightly acidic, containing carbon dioxide and some sulfates,” Mohit Melwani Daswani said, the planetary scientist and head of the study of NASA’s Jet Propulsion Laboratory.

“The availability of liquid water is the first step towards sustainability. In addition, the exchange of chemicals between the ocean and the rocky interior may have been significant in the past, so the potential life may have been able to use chemical energy to survive, “  he added.

Daswani said the germs resemble some of the Earth’s bacteria that use carbon dioxide for energy and could have survived using ingredients available in Europa’s early oceans.

Europa is slightly smaller than the Earth’s moon. The ocean of Europa, with a possible depth of 65 to 160 km, may contain twice as much water as the Earth’s oceans!

The study assessed whether Europa was previously habitable and did not examine its current inhabitability, a question that researchers are investigating by examining all the data collected from space missions and observations from telescopes.

According to many, in order for Humanity to be able to diffuse into space (the so-called scattering), it needs to create bases in its own solar system.

Most likely, terrafoming (geoengineering) methods will be used to completely change any “compatible” celestial bodies. A process that can take centuries.

Continue Reading
Advertisement

DO NOT MISS

Trending