Connect with us

Space

Is Planet X a miniature black hole? Astrophysicists have come up with a way to find out

Is Planet X a miniature black hole? Astrophysicists have come up with a way to find out 86

This can be tracked by miniature flashes of light that will form after a black hole absorbs surrounding objects.

Could a hypothetical ninth planet of the solar system, the “X-planet,” be a miniature black hole? US astrophysicists have figured out how to find out with the LSST observational telescope under construction. An article describing the work was accepted for publication by the Astrophysical Journal Letters.

“If small celestial bodies fall in the vicinity of a black hole, they begin to melt under the influence of heat, which produces gas falling on the event horizon. After that, the attraction of the black hole begins to break them, resulting in characteristic flashes of light,” one of the authors work said, professor at Harvard University Abraham Loeb.

Almost five years ago, two American planetologists, Konstantin Batygin and Michael Brown, said they had found the first traces of the existence of the mysterious X-Planet. So scientists called the hypothetical ninth planet of the solar system, which is located at least 100 billion kilometers from the sun and is similar in size to Neptune or Uranus.

Until scientists found it, the researchers were only able to narrow down the area where it might be located, as well as find new hints of its existence. These failures made many astronomers doubt the hypothesis. Other planetologists have begun to look for alternatives for what the X-Planet might look like and where it might be.

Is Planet X a miniature black hole? Astrophysicists have come up with a way to find out 87

For example, some astrophysicists now admit that the X-Planet may not actually be a gas giant, a large earth-like planet or a “guest” from another star system, but a much more exotic object – the so-called primary black hole.

It is a miniature analogue of ordinary and supermassive black holes, which in mass are comparable not with stars and galaxies, but with planets. As cosmologists suggest, such black holes could appear in the first moments of the existence of the Universe due to the fact that matter was unevenly distributed over its space. The largest of them could survive to the present day – however, they are gradually decreasing due to Hawking radiation.

Searches for “Planet X”

Finding such objects, as Professor Loeb notes, is even more difficult than the classic X-Planet. This is due to the fact that such black holes, unlike the coldest and most invisible planets, do not themselves generate any radiation.

Harvard astrophysicists have found that, nevertheless, the most sensitive telescopes on Earth can still notice the primary black hole. Astronomers came to this conclusion, drawing attention to the situation in that part of the solar system where the “X-planet” or primary black hole is supposedly located.

As scientists noted, they will be located at a point where the attraction of the Sun is weakening so much that a primary black hole the size of a planet will constantly attract clusters of matter from the surrounding space, including fragments of asteroids and comets that fill the outskirts of the solar system.

As a result, according to the calculations of scientists, due to the activity of a black hole, miniature flashes of light will almost constantly occur. They can appear after the attraction of a black hole will tear apart objects with a diameter from a few centimeters to several hundred meters. For existing ground-based telescopes, these flares will be barely visible, but they can be seen by the LSST observatory under construction, which is located at the edge of the Atacama Desert in Chile.

“The LSST observatory has an extremely wide field of view, so it will receive images of the entire night sky twice a week. This is very important, given that we do not know exactly where the X-planet is located. In addition, its high sensitivity will allow us to find traces flashes that produce even the smallest objects approaching a black hole,” Loeb continues.

If the theorists’ calculations are correct, then LSST can find traces of the existence of a black hole in the first three years of operation, provided that it is comparable in mass with Jupiter or significantly less than it. Otherwise, astronomers will prove that such objects in the solar system do not exist, and will also help theorists to impose more stringent restrictions on the permissible masses of primary black holes. This is important for studying how the expansion of the universe went.

Comments

Space

KOI-5Ab, the curious planet that orbits in a system of three suns

KOI-5Ab, the curious planet that orbits in a system of three suns 100
Photo: (Caltech / R. Hurt (IPAC))

To us, the Sun alone seems perfectly normal, but our solar system is actually a strange exception.

Most stars in the Milky Way galaxy have at least one companion star. In a system 1,800 light-years away, astronomers have finally confirmed the existence of a gas giant planet orbiting stars in a triple star system.

Called KOI-5, the system is located in the constellation Cygnus, and the exoplanet was confirmed ten years after it was first detected by the Kepler space telescope.

In fact, the planet – now known as KOI-5Ab – was discovered by Kepler when it began operations back in 2009.

“KOI-5Ab was dropped because it was difficult and we had thousands of other candidates,” astronomer David Siardi of NASA’s Exoplanet Science Institute said.

“There were lighter dives than the KOI-5Ab, and every day we learned something new from Kepler, so the KOI-5 was almost forgotten.”

Exoplanet hunters tend to avoid the complexities of multi-star systems; of the more than 4,300 exoplanets confirmed to date, less than 10 percent are multi-star systems, although such systems dominate the galaxy. As a result, little is known about the properties of exoplanets in multi-star systems compared to those orbiting a lone star.

After Kepler’s discovery, Chardy and other astronomers used ground-based telescopes such as the Palomar Observatory, Keck Observatory, and the Gemini North Telescope to study the system. By 2014, they had identified two companion stars, KOI-5B and KOI-5C.

Scientists were able to establish that the planet KOI-5Ab, is a gas giant that is about half the mass of Saturn and 7 times the size of Earth, and is in a very close five-day orbit around KOI-5A. KOI-5A and KOI-5B, both of roughly the same mass as the Sun, form a relatively close binary system with an orbital period of about 30 years.

KOI-5Ab, the curious planet that orbits in a system of three suns 101

A third star, KOI-5C, orbits the binary system at a much greater distance, with a period of about 400 years – slightly longer than Pluto’s 248-year orbit.

“By studying this system in more detail, perhaps we can understand how planets are created in the universe.”

The discovery was announced at the 237th meeting of the American Astronomical Society.

Continue Reading

Space

Why the universe does not fit into science

Why the universe does not fit into science 102
Photo: YouTube

Science can be compared to an artist painting what he has never seen, or to a writer describing other people’s travels: objects that he has never seen, places where he has never been. Sometimes such scientific “arts” turn out to be beautiful and interesting, but most of them will forever remain only theories, because they are beyond human capabilities.

In fact, science has the right only to speculate: how our universe appeared, how old it is, how many stars and other objects it contains.

Universe model

Why the universe does not fit into science 103

How many stars are there in the sky?

With an unarmed eye, a person can see about nine thousand stars in the sky in one cloudless and moonless night. And armed with binoculars or a telescope, much more – up to several million. However, this is much less than their true number in the universe. Indeed, only in our one galaxy (the Milky Way) there are about 400 billion stars. The exact amount, of course, is not known to science. And the visible universe contains about 170 billion galaxies.

It is worth clarifying that scientists can see the universe 46 billion light years deep in all directions. And the visible (observable) universe includes the space accessible to our eyes from the moment of the Big Explosion. In other words, only this (accessible to human perception) space science refers to our universe. Science does not consider everything that follows.

It is believed that there are supposedly a ceptillion (10 to 24 degrees) stars in our universe. These are theoretical calculations based on the approximate size and age of the universe. The origin of the universe is explained by the Big Bang theory. This is why the universe is constantly expanding and the more time passes, the more complex the universe and its components become.

Why the universe does not fit into science 104

It is not entirely correct to consider and perceive this scientific theory “head-on”. Scientists always claim that that explosion was not exactly an explosion, and the point that exploded was not the only one. After all, it was everywhere, because space did not exist then. And in general – everything happened quite differently from what is described in the Big Bang theory, but all other descriptions of the origin of the universe are even more incredible and inaccurate.

Separate but interconnected

That which is beyond the reach of human perception is usually discarded by science, or recognized as non-existent. Recognizing one thing, science does not want to recognize the existence of the other, although everything in our world is interconnected and is not able to exist separately – by itself.

Each object of the universe is a part of it much more than an independent, separate object.

Any person, like any material object of our world, consists of components: organs, cells, molecules, atoms. And each of its constituent parts can represent the whole world. Separate, and at the same time connected with all the others.

However, science, as a rule, perceives all the components of the universe – people, animals, plants, objects, the Earth, the Sun, other planets and stars – as separate subjects, thereby limiting itself.

Why the universe does not fit into science 105

Even what is considered the visible universe, one of the atoms of which could be called our solar system, is not subject to the boundaries of human perception. But perhaps the atom is an exaggeration, and our solar system is not even an atom, but one of its elements!

How, being so far from the truth, can one reason about something with the degree of probability with which science tries to reason about the origin of the universe?

Continue Reading

Space

An unexplained wobble shifts the poles of Mars

An unexplained wobble shifts the poles of Mars 106

The red planet sways from side to side like a whirligig when it loses speed. The new study allowed scientists to notice that the poles of Mars deviate slightly from the axis of rotation of the planet. On average, they move 10 cm from the center with a period of 200 days.

Such changes are called the Chandler Oscillations  – after the American astronomer Seth Chandler, who discovered them in 1891. Previously, they were only seen on Earth. It is known that the displacement of the poles of rotation of our planet occurs with a period of 433 days, while the amplitude reaches 15 meters. There is no exact answer why this is happening. It is believed that the fluctuations are influenced by processes in the ocean and the Earth’s atmosphere.

Chandler’s wobbles on Mars are equally perplexing. The authors of the study discovered them by comparing data from 18 years of studying the planet. The information was obtained thanks to three spacecraft that orbit the Red Planet: Mars Odyssey, Mars Reconnaissance Orbiter and Mars Global Surveyor. 

Since Mars has no oceans, it is likely that the Red Planet’s wobbly rotation is due to changes in atmospheric pressure. This is the first explanation that researchers have shared. In the future, there should be new details about the fluctuations that have so interested the scientific community.

Continue Reading
Advertisement

DO NOT MISS

Trending