Connect with us

Planet Earth

How Dangerous Is Genetically Modified Food?

Last month, a group of Australian scientists published a warning to the citizens of the country and of the world who collectively gobble up some $34 billion annually of its agricultural exports. The warning concerned the safety of a new type of wheat.

As Australia’s number-one export, a $6-billion annual industry, and the most-consumed grain locally, wheat is of the utmost importance to the country. A serious safety risk from wheat – a mad wheat disease of sorts – would have disastrous effects for the country and for its customers.

Which is why the alarm bells are being rung over a new variety of wheat being ushered toward production by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia. In a sense, the crop is little different than the wide variety of modern genetically modified foods. A sequence of the plant’s genes has been turned off to change the wheat’s natural behavior a bit, to make it more commercially viable (hardier, higher yielding, slower decaying, etc.).

Franken-Wheat?

What’s really different this time – and what has Professor Jack Heinemann of the University of Canterbury, NZ, and Associate Professor Judy Carman, a biochemist at Flinders University in Australia, holding press conferences to garner attention to the subject – is the technique employed to effectuate the genetic change. It doesn’t modify the genes of the wheat plants in question; instead, a specialized gene blocker interferes with the natural action of the genes.

The process at issue, dubbed RNA interference or RNAi for short, has been a hotbed of research activity ever since the Nobel Prize-winning 1997 research paper that described the process. It is one of a number of so-called “antisense” technologies that help suppress natural genetic expression and provide a mechanism for suppressing undesirable genetic behaviors.

RNAi’s appeal is simple: it can potentially provide a temporary, reversible off switch for genes. Unlike most other genetic modification techniques, it doesn’t require making permanent changes to the underlying genome of the target. Instead, specialized siRNAs – chemical DNA blockers based on the same mechanism our own bodies use to temporarily turn genes on and off as needed – are delivered into the target organism and act to block the messages cells use to express a particular gene. When those messages meet with their chemical opposites, they turn inert. And when all of the siRNA is used up, the effect wears off.

The new wheat is in early-stage field trials (i.e., it’s been planted to grow somewhere, but has not yet been tested for human consumption), part of a multi-year process on its way to potential approval and not unlike the rigorous process many drugs go through. The researchers responsible are using RNAi to turn down the production of glycogen. They are targeting the production of the wheat branching enzyme which, if suppressed, would result in a much lower starch level for the wheat.

The result would be a grain with a lower glycemic index – i.e., healthier wheat.

This is a noble goal. However, Professors Heinemann and Carman warn, there’s a risk that the gene silencing done to these plants might make its way into humans and wreak havoc on our bodies. In their press conference and subsequent papers, they describe the possibility that the siRNA molecules – which are pretty hardy little chemicals and not easily gotten rid of – could wind up interacting with our RNA.

If their theories prove true, the results might be as bad as mimicking glycogen storage disease IV, a super-rare genetic disorder which almost always leads to early childhood death.

“Franken-Wheat Causes Massive Deaths from Liver Failure!”

Now that is potentially headline-grabbing stuff. Unfortunately, much of it is mere speculation at this point, albeit rooted in scientific expertise on the subject.

What they’ve produced is a series of opinion papers – not scientific research nor empirical data to prove that what they suspect might happen, actually does. They point to the possibilities that could happen if a number of criteria are met:

  • If the siRNAs remain in the wheat in transferrable form, in large quantities, when the grain makes it to your plate. And…
  • If the siRNA molecules interfere with the somewhat different but largely similar human branching enzyme as well.

Then the result might be symptoms similar to such a condition, on some scale or another, anywhere from completely unnoticeable to highly impactful.

They further postulate that if the same effect is seen in animals, it could result in devastating ecological impact. Dead bugs and dead wild animals.

Luckily for us, as potential consumers of these foods, all of these are easily testable theories. And this is precisely the type of data the lengthy approval process is meant to look at.

Opinion papers like this – while not to be confused with conclusions resulting from solid research – are a critically important part of the scientific process, challenging researchers to provide hard data on areas that other experts suspect could be overlooked. Professors Carman and Heinemann provide a very important public good in challenging the strength of the due-diligence process for RNAi’s use in agriculture, an incomplete subject we continue to discover more about every day.

However, we’ll have to wait until the data come back on this particular experiment – among thousands of similar ones being conducted at government labs, universities, and in the research facilities of commercial agribusinesses like Monsanto and Cargill – to know if this wheat variety would in fact result in a dietary apocalypse.

That’s a notion many anti-genetically modified organism (GMO) pundits seem to have latched onto following the press conference the professors held. But if the history of modern agriculture can teach us anything, it’s that far more aggressive forms of GMO foods appear to have had a huge net positive effect on the global economy and our lives. Not only have they not killed us, in many ways GMO foods have been responsible for the massive increases in public health and quality of life around the world.

The Roots of the GMO Food Debate

The debate over genetically modified (GM) food is a heated one. Few contest that we are working in somewhat murky waters when it comes to genetically modified anything, human or plant alike. At issue, really, is the question of whether we are prepared to use the technologies we’ve discovered.

In other words, are we the equivalent of a herd of monkeys armed with bazookas, unable to comprehend the sheer destructive power we possess yet perfectly capable of pulling the trigger?

Or do we simply face the same type of daunting intellectual challenge as those who discovered fire, electricity, or even penicillin, at a time when the tools to fully understand how they worked had not yet been conceived of?

In all of those cases, we were able to probe, study, and learn the mysteries of these incredible discoveries over time. Sure, there were certainly costly mistakes along the way. But we were also able to make great use of them to advance civilization long before we fully understood how they worked at a scientific level.

Much is the same in the study and practical use of GM foods.

While the fundamentals of DNA have been well understood for decades, we are still in the process of uncovering many of the inner workings of what is arguably the single most advanced form of programming humans have ever encountered. It is still very much a rapidly evolving science to this day.

For example, in the 1990s, an idea known simply as “gene therapy” – really a generalized term for a host of new-at-the-time experimental techniques that share the simple characteristic of permanently modifying the genetic make-up of an organism – was all the rage in medical study. Two decades on, it’s hardly ever spoken of. That’s because the great majority of attempted disease therapies from genetic modification failed, with many resulting in terrible side effects and even death for the patients who underwent the treatments. Its use in the early days, of course, was limited almost exclusively to some of the world’s most debilitating, genetically rooted diseases. Still – whether in their zeal to use a fledgling tool to cure a dreadful malady or in selfish, hurried desire to be recognized among the pioneers of what they thought would be the very future of medicine – doctors chose to move forward at a dangerous pace with gene therapy.

In one famous case, and somewhat typical of the times, University of Pennsylvania physicians enrolled a sick 18-year-old boy with a liver mutation into a trial for a gene therapy that was known to have resulted in the deaths of some of the monkeys it had just been tested on. The treatment resulted in the young man’s death a few days later, and the lengthy investigation that followed resulted in serious accusations of what can only be called “cowboy medicine.”

Not one of science’s prouder moments, to be sure. But could GM foods be following the same dangerous path?

After all, the first GM foods made their way to market during the same time period. The 1980s saw large-scale genetic-science research and experimentation from agricultural companies, producing everything from antibiotic-resistant tobacco to pesticide-hardy corn. After much debate and study, in 1994 the FDA gave approval to the first GM food to be sold in the United States: the ironically named Flavr Savr tomato, with its delayed ripening genes which made it an ideal candidate for sitting for days or weeks on grocery store shelves.

Ever since, there has been a seeming rush of modified foods into the marketplace.

Modern GM foods include soybeans, corn, cotton, canola, sugar beets, and a number of squash and greens varieties, as well as products made from them. One of the most prevalent modifications is to make plants glyphosate-resistant, or in common terms, “Roundup Ready.” This yields varieties that are able to stand up to much heavier doses of the herbicide Roundup, which is used to keep weeds and other pest plants from damaging large monoculture fields, thereby reducing costs and lowering risks.

In total it is estimated that modern GM crops have grown to become a $12 billion annual business since their commercialization in 1994, according to the International Service for the Acquisition of Agri-biotech Applications (ISAAA). Over 15 million farms around the world are reported to have grown GM crops, and their popularity increases every year.

They’ve brought huge improvements in shelf life, pathogen and other stress resistance, and even added nutritional benefits. For instance, yellow rice – which was the first approved crop with an entirely new genetic pathway added artificially – provides beta-carotene to a large population of people around the world who otherwise struggle to find enough in their diets.

However, the race for horticulturalists to the genetic table in the past few decades – what could be described accurately as the transgenic generation of research – has by no means been our first experiment with the genetic manipulation of food. In fact, if anything, it is a more deliberate, well studied, and careful advance than those that came before it.

A VERY Brief History of Genetically Modified Food

Some proponents of GMO foods are quick to point out that humans have been modifying foods at the genetic level since the dawn of agriculture itself. We crossbreed plants with each other to produce hybrids (can I interest you in a boysenberry?). And of course, we select our crops for breeding from those with the most desirable traits, effectively encouraging genetic mutations that would have otherwise resulted in natural failure, if not helped along by human hands. Corn as we know it, for example, would never have survived in nature without our help in breeding it.

Using that as a justification for genetic meddling, however, is like saying we know that NASCAR drivers don’t need seatbelts because kids have been building soapbox racers without them for years. Nature, had the mix not been near ideal to begin with, would have prevented such crossbreeding. Despite Hollywood’s desires, one can’t simply crossbreed a human and a fly, or even a bee and a mosquito, for that matter – their genetics are too different to naturally mix. And even if it did somehow occur, if it did not make for a hardier result, then natural selection would have quickly kicked in.

No, I am talking about real, scientific genetic mucking – the kind we imagined would result in the destruction of the world from giant killer tomatoes or man-eating cockroaches in our B-grade science-fiction films. Radiation mutants.

Enterprising agrarians have been blasting plants with radiation of all sorts ever since we starting messing around with atomic science at the dawn of the 20th century. In the 1920s, just when Einstein and Fermi were getting in their grooves, Dr. Lewis Stadler at the University of Missouri was busy blasting barley seeds with X-rays – research that would usher in a frenzy of mutation breeding to follow.

With the advent of nuclear technology from the war effort, X-rays expanded into atomic radiation, with the use of gamma rays leading the pack. The United States even actively encouraged the practice for decades, through a program dubbed “Atoms for Peace” that proliferated nuclear technology throughout various parts of the private sector in a hope that it would improve the lives of many. And it did.

Today, thousands of agricultural varieties we take for granted – including, according to a 2007 New York Times feature on the practice, “rice, wheat, barley, pears, peas, cotton, peppermint, sunflowers, peanuts, grapefruit, sesame, bananas, cassava and sorghum” – are a direct result of mutation breeding. They would not be classified as GM foods, in the sense that we did not use modern transgenic techniques to make them, but they are genetically altered nonetheless, to the same or greater degree than most modern GMO strains.

Unlike modern GM foods – which are often closely protected by patents and armies of lawyers to ensure the inventing companies reap maximum profits from their use – the overwhelming majority of the original generations of radiation-mutated plant varieties came out of academic and government sponsored research, and thus were provided free and clear for farmers to use without restriction.

With the chemical revolution of the mid-20th century, radiation-based mutations were followed by the use of chemical agents like the methyl sulfate family of mutagens. And after that, the crudest forms of organic genetic manipulation came into use, such as the uses of transposons, highly repetitive strands of DNA discovered in 1948 that can be used like biological duct tape to cover whole sections the genome.

These modified crops stood up better to pests, lessened famines, reduced reliance on pesticides, and most of all enabled farmers to increase their effective yields. Coupled with the development of commercial machinery like tractors and harvesters, the rise of mutagenic breeding resulted in an agricultural revolution of a magnitude few truly appreciate. In the late 1800s, the overwhelming majority of global populations lived in rural areas, and most people spent their lives in agrarian pursuits. From subsistence farmers to small commercial operations, the majority of the population of every country, the US included, was employed in agriculture.

Today, less than 2% of the American population (legal and illegal combined) works in farming of any kind. Yet we have more than enough food to feed all of our people, and a surplus to export to more densely populated nations like China and India.

The result is that a sizable percentage of the world’s plant crops today – the ones on top of which much of the modern-era GMO experiments are done – are already genetic mutants. Hence the slippery slope that serves as the foundation of the resistance from regulators over the labeling of GM food products. Where do you draw the line on what to label? And frankly, how do you even know for sure, following the Wild-West days of blasting everything that could grow with some form or another of radiation, what plants are truly virgin DNA?

The world’s public is largely unaware that many of the foods they eat today – far more than those targeted by anti-GMO protestors and labeling advocates – are genetically modified. Yet we don’t seem to be dying off in large numbers, like the anti-RNAi researchers project will happen. In fact, global lifespans have increased dramatically across the board in the last century.

The Rise of Careful

The science of GM food has advanced considerably since the dark ages of the 1920s. Previous versions of mutation breeding were akin to trying to fix a pair of eyeglasses with a sledgehammer – messy and imprecise, with rare positive results. And the outputs of those experiments were often foisted upon a public without any knowledge or understanding of what they were consuming.

Modern-day GM foods are produced with a much more precise toolset, which means less unintended collateral damage. Of course it also opens up a veritable Pandora’s box of new possibilities (glow-in-the-dark corn, anyone?) and with it a whole host of potential new risks. Like any sufficiently powerful technology, such as the radiation and harsh chemicals used in prior generations of mutation breeding, without careful control over its use, the results can be devastating. This fact is only outweighed by the massive improvements over the prior, messier generation of techniques.

And thus, regulatory regimes from the FDA to CSIRO to the European Food Safety Authority (EFSA) are taking increasing steps to ensure that GM foods are thoroughly tested long before they come to market. In many ways, the tests are far more rigorous than those that prescription drugs undergo, as the target population is not sick and in need of urgent care, and for which side effects can be tolerated. This is why a great many of the proposed GM foods of the last 20 years, including the controversial “suicide seeds” meant to protect the intellectual property of the large GM seed producers like Monsanto (which bought out Calgene, the inventor of that Flavr Savr tomato, and is now the 800-lb. gorilla of the GM food business), were never allowed to market.

Still, with the 15 years from 1996 to 2011 seeing a 96-fold increase in the amount of land dedicated to growing GM crops and the incalculable success of the generations of pre-transgenic mutants before them, scientists and corporations are still in a mad sprint to find the next billion-dollar GM blockbuster.

In doing so they are seeking tools that make the discovery of such breakthroughs faster and more reliable. With RNAi, they may just have found one such tool. If it holds true to its laboratory promises, its benefits will be obvious from all sides.

Unlike previous generations of GMO, RNAi-treated crops do not need to be permanently modified. This means that mutations which outlive their usefulness, like resistance to a plague which is eradicated, do not need to live on forever. This allows companies to be more responsive, and potentially provides a big relief to consumers concerned about the implications of eating foods with permanent genetic modifications.

The simple science of creating RNAi molecules is also attractive to people who develop these new agricultural products, as once a messenger RNA is identified, there is a precise formula to tell you exactly how to shut it off, potentially saving millions or even billions of dollars that would be spent in the research lab trying to figure out exactly how to affect a particular genetic process.

And with the temporary nature of the technique, both the farmers and the Monsantos of the world can breathe easily over the huge intellectual-property questions of how to deal with genetically altered seeds. Not to mention the questions of natural spread of strains between farms who might not want GMO crops in their midst. Instead of needing to engineer in complex genetic functions to ensure progeny don’t pass down enhancements for free and that black markets in GMO seeds don’t flourish, the economic equation becomes as simple as fertilizer: use it or don’t.

While RNAi is not a panacea for GMO scientists – it serves as an off switch, but cannot add new traits nor even turn on dormant ones – the dawn of antisense techniques is likely to mean an even further acceleration of the science of genetic meddling in agriculture. Its tools are more precise even than many of the most recent permanent genetic-modification methods. And the temporary nature of the technique – the ability to apply it selectively as needed versus breeding it directly into plants which may not benefit from the change decades on – is sure to please farmers, and maybe even consumers as well.

That is, unless the scientists in Australia are proven correct, and the siRNAs used in experiments today make their way into humans and affect the same genetic functions in us as they do in the plants. The science behind their assertions still needs a great deal of testing. Much of their assertion defies the basic understanding of how siRNA molecules are delivered – an incredibly difficult and delicate process that has been the subject of hundreds of millions of dollars of research thus far, and still remains, thanks to our incredible immune systems, a daunting challenge in front of one of the most promising forms of medicine (and now of farming too).

Still, their perspective is important food for thought… and likely fuel for much more debate to come. After all, even if you must label your products as containing GMO-derived ingredients, does that apply if you just treated an otherwise normal plant with a temporary, consumable, genetic on or off switch? In theory, the plant which ends up on your plate is once again genetically no different than the one which would have been on your plate had no siRNAs been used during its formative stages.

One thing is sure: the GMO food train left the station nearly a century ago and is now a very big business that will continue to grow and to innovate, using RNAi and other techniques to come.

Technology is the largest sector of the US economy right now – but that doesn’t make selecting the best investments any easier. Not only must a new development get regulatory approval, it has to cross “the chasm”… the dangerous zone between early adopters picking it up and the mainstream accepting it. Learn how to choose the tech most likely to achieve this, and you’ll be on your way to windfall gains.

Comments

Planet Earth

By supporting India in a border conflict, Moscow pissed Beijing off which in turn declared Vladivostok its city

China, which is already trying to change the status quo through de facto control in East Ladakh, has now begun a territorial dispute with Russia.

According to the Chinese resource WION , after Russian officials published a video dedicated to the celebration of the 160th anniversary of the founding of Vladivostok on Weibo, Chinese officials quickly corrected their partners, reminding them that Vladivostok was the territory of China in the 19th century.

This is a tweet from the Russian Embassy in China, where Chinese officials write:

“The history of Vladivostok began in 1860, when Russia built a military port there. Previously, this city was called Haishenvai. It has always been Chinese territory before Russia annexed it through the unjust Beijing Treaty.

It should be noted that in addition to India, China is now also involved in a territorial dispute with Japan and is invading its sea territory. 

Moscow pissed Beijing off

According to Asia Times Financial, it seems that China is very upset that its “ally” Putin is selling fighter jets to India, the contract for the supply of which was signed with the Minister of Defense of India, who attended the Victory Day parade last week.

President Xi Jinping did not go well in 2020, and here, in addition, he received a sharp reminder of real politics when Russia expressed support for India in connection with its border conflict with China. And although Russia, India and China are members of the Shanghai Cooperation Organization, relations between Moscow and Delhi have deeper roots than the recent warming of relations with President Putin Xi Jinping.

Therefore, despite the growing interdependence between Russia and China, when it comes to energy, weapons and other transactions, including negotiations to create a digital currency system, Moscow has confirmed that it supports India’s position in the Sino-Indian border dispute. To slightly sweeten the pill, Moscow expressed support for China’s new national security law in Hong Kong, but it had little effect on Beijing. 

This decision of Russia has great commercial motives, as well as, possibly, historical geostrategic ties. India buys about 60% of its weapons from Russia. Moscow and Delhi have had strong diplomatic relations since the Cold War. Both countries signed the Indo-Soviet Treaty of Peace, Friendship and Cooperation for a Strategic Partnership in 1971. This was a departure from India’s previous position, which during the Cold War followed a non-aligned policy.

A week after the deadly clash on the Indian-Chinese border, Indian Defense Minister Rajnat Singh visited Moscow to take part in the 75th Victory Day parade on Red Square, which marked the victory of the Soviet Union over Nazi Germany in World War II. Singh said that India is going to buy as much military equipment as possible from Russia. 

According to Indian media reports, the Minister of Defense bought 33 fighters in one package: 21 MiG-29 and 12 Su-30 MKI, and also ordered the modernization of another 59 aircraft. The total amount of orders amounted to almost 2.4 billion dollars. India also approved a deal to supply the Russian S-400 missile system, which cost $ 5.4 billion. Although the contract was signed back in 2018, India was in no hurry to fulfill it, fearing US sanctions. 

In addition, according to Chinese media reports, India also bought 600 of the latest air-to-air missiles and cruise missiles in an unknown quantity. At the same time, Russia announced that it could provide India with even more weapons in a short time.

This move by Moscow infuriated Beijing, which is not surprising: on the eve, China asked Russia not to respond to India’s requests for weapons systems, but Moscow ignored this request.

Professor Harsh Pant from Royal Imperial College London said in an interview with Live Mint that “With this step, Russia wanted to show its independence from China, because, after the annexation of Crimea in 2014, only China recognized the legality of this step, declaring itself an older brother in exchange “.

As a result, many Chinese news agencies began to flog over Russia. So the Jiabao Business newspaper  noted that Putin has lifted Russia from its knees for 20 years, but so far Russia’s GDP is equivalent to only one Guangdong province. “What happened to Russia?” – asks Jiabao Business.

The IMF report “Prospects for the Development of the World Economy” recently predicted that Russian GDP will fall by 6.6% this year, so by the end of 2020, Guangdong will even surpass Russia in terms of GDP. 

Why does Russia want to sell weapons? According to the latest data, Russian oil reserves are in eighth place in the world, amounting to 80,000 million barrels. Rich oil resources brought Russia a steady stream of profits, but the recent fall in oil prices, for which Moscow was partially responsible, hit the country hard. Russia, which lives earning money lying on the couch, has completely turned into a typical commodity country.

The country’s second problem is unthinkable corruption, and even Putin admits that the efficiency of industrial production in Russia is lower than that of Western countries. Therefore Jiabao Business further recommends, before meddling in other people’s border disputes, Moscow is necessary to modernize its industrial structure, punish bribe takers and improve international relations.

Continue Reading

Planet Earth

Giant mountains discovered inside the Earth

Studying the boundary between the Earth’s core and mantle, geophysicists have found that it is not as smooth as previously thought. Surfaces separating the inner layers also have a complex relief. It turns out that our planet is not at all like a set of spheres nested into each other, as is customary to portray it.

Reading the waves. Earth’s crust

The deep bowels of geophysics are judged by seismic waves generated by earthquakes. There are longitudinal P-waves – when elastic mechanical vibrations occur along the propagation direction and transverse S-waves – the vibrations in them are perpendicular.At the boundary of layers with different densities, the wave velocity changes dramatically. In the transition from a solid crust to a more plastic upper mantle, it increases. This border is called the surface of Mokhorovichich. The lower mantle is harder than the upper. The outer core, in which transverse seismic waves do not propagate, is liquid, and the inner core is again solid, but slightly plastic.

While the network of seismographs was rare, the sections between the inner shells with a certain degree of conventionality were depicted as spheres. As the data accumulated, it became clear that each of these boundaries is a complex surface with its relief and internal “mountains” even higher than on the Earth’s surface, and the “troughs” are deeper. From the top of Everest to the bottom of the Mariana Trench about 20 kilometers, and, for example, the differences of the border of Mokhorovichich, dividing the crust and upper mantle, reach 40 kilometers. And all this at a depth of five to 70 kilometers.

This was proved by scientists from China and the United States . They analyzed the results of observations of hundreds of seismic stations obtained from the same events: the earthquakes in Bolivia of 1994 and the Sea of ​​Okhotsk in 2008 and 2012, as well as archival records of seismographs of the National Center for Information on Earthquakes of the US Geological Survey.

The authors of the study found that for the boundary between the upper and lower mantle, located at a depth of about 660-670 kilometers, the data of the various stations almost completely coincide. That is, she has a stable relief, which she even managed to map. Signal processing of the Bolivian earthquake made it possible to literally create a “topographic map” of the surface of the lower mantle for an entire region in Southeast Asia .

The most dynamic area. Mantle and core

When talking about the dynamics of the Earth, they usually mean large-scale surface processes associated with the movement of lithospheric plates. In the zones of mid-ocean ridges and rifts, the lithosphere moves apart, and in subduction zones on the outskirts of the continents, oceanic plates sink under the continental.

But no less dynamic processes and surface movements occur inside the Earth – only their reflection. First of all, we are talking about mantle convection, which arises due to the temperature difference in the bowels and on the surface of the planet. 

Upward flows of convection cells stretch the lithosphere, downward flows drag it into the mantle. Moreover, in the upper parts of the cells, the substance flows in a horizontal plane and these flows cause lithospheric plates to move.The most dynamic region of the Earth is located on the border of the core and mantle, at a depth of about 2900 kilometers.

It is believed that its heterogeneity affects many geological processes, in particular, the oscillation of the axis of rotation of the Earth and the characteristics of the geomagnetic field. In addition, convection itself is a consequence of what happens in the D ”layer at the boundary with the core.On its surface, scientists discovered arrays of unusually dense, hot rocks – zones of abnormally low seismic wave velocities (ULVZ – Ultra-low velocity zones). They stretch for hundreds of kilometers, and their “height” – tens of kilometers.Above them are hot spots with volcanoes: Hawaiian, Marquesas, Galapagos Islands and the Samoa archipelago in the Pacific Ocean, Canary Islands and Azores , Iceland in the Atlantic, Kerguelen archipelago in the Indian, Afar volcanism zone in the Great African Rift.

Using the new machine learning algorithm, American scientists at Johns Hopkins University and the University of Maryland at College Park together with their Israeli colleagues from Tel Aviv University performed a parallel analysis of seven thousand seismograms covering hundreds of earthquakes from 1990 to 2018, and for the first time compiled a detailed section map the core and mantle of the Pacific region, on which all ULVZ zones were applied.It turned out that ULVZ are only separate protrusions within the larger, low-shear-velocity provinces (LLSVP) provinces, which are also called superplumes. Their branches penetrate up into the mantle for thousands of kilometers. Now scientists distinguish two such provinces – African and Pacific.

Superplumes (provinces with a low shear rate) at the boundary of the core and mantle look like they look from the North (a) and South (b) poles. The center shows the core of the Earth with the projection onto it of the contours of the continents; outer contour - conditional border of the lower mantle
© Sanne Cottaar, Vedran Lekic / Geophysical Journal International, 2016Superplumes (provinces with a low shear rate) at the boundary of the core and mantle look like they look from the North (a) and South (b) poles. The center shows the core of the Earth with the projection onto it of the contours of the continents; outer contour – conditional border of the lower mantle

The circulation of matter in the mantle

Australian scientists from the University of Curtin suggested that the periods when all the land of the Earth united into single supercontinents – Pangea, Rodinia, Colombia and others, coincided with activity in the deep LLSVP provinces. They built a dynamic model linking the evolution of superplumes to the assembly and decay of supercontinent. According to this model, LLSVP arrays are formed from lithospheric plates, which, as it turned out, sinking, does not dissolve in the mantle, as previously thought, but descend to the very boundary of the core. Here they melt, and giant drops of preheated matter – mantle plumes – coming off from LLSVP, float to the surface, giving rise to a new geodynamic cycle. The lithosphere rises above the plumes, forming a dome, and then cracks and diverges.

Inside the core

Researchers from the US and China have analyzed how seismic waves passing through the boundary between the outer and inner core change. For this, we used signals from doublets – repeated earthquakes with the same epicenter.

It turned out that these changes have a certain periodicity, which can be explained by two mechanisms: either the inner core rotates by about 0.05-0.1 degrees per year, or high “mountains” and deep “canyons” appear on its surface. So, a dynamically changing relief can also be at the deepest boundary between the earth’s shells.

Continue Reading

Planet Earth

The Earth’s magnetic field has been quiet lately. Until now!

The Earth’s magnetic field has been quiet lately. Very quiet. The sun is in a deep minimum of activity, which may be the deepest solar minimum in a century. 

Geomagnetic storms simply do not exist. But on June 23, something unusual was recorded. The Earth’s magnetic field swung back and forth by about 1/3 of a degree.

“That’s why I was so surprised on June 23 when my instruments detected a magnetic anomaly,” said Stuart Green, who works with a research-class magnetometer in his home in Preston, UK. 

“For more than 30 minutes, the local magnetic field oscillated like a sine wave.”

Green quickly checked the solar wind data from the NOAA DSCOVR satellite. 

“There was nothing – no surge in solar wind speed or other factors that could explain this disturbance,” he says.

He was not the only one to notice this. In the Lofoten Islands of Norway, Rob Stams found a similar anomaly on his magnetometer. 

“It was amazing,” says Stams. “Our magnetic field swung back and forth by about 1/3 of a degree.” I also discovered ground currents with the same 10 minute period.”

Space physicists call this phenomenon “pulsation.” Imagine that you are blowing on a piece of paper, making it flutter from your breath. Solar wind can have a similar effect on magnetic fields. During the extreme silence of the solar minimum, such waves can be “heard” like a pin falling in a quiet room.

The Earth’s magnetic field was so quiet on June 23 that this ripple was heard all over the world. The INTERMAGNET global network of magnetic observatories recorded wave activity simultaneously from Hawaii to China and the Arctic Circle and even in Antarctica.

PC waves are classified into 5 types depending on their period. The 10-minute wave June 23 falls into the Pc5 category. Slow Pc5 waves were associated with the loss of particles from Van Allen’s radiation belts. Energy electrons beat these waves down into the Earth’s atmosphere, where they scatter.

Continue Reading
Advertisement

DO NOT MISS

Trending