Connect with us

Science & Technology

First human frozen by cryogenics could be brought back to life ‘in just TEN years’, claims expert

Hundreds worldwide have had their corpses frozen in a cryogenic chamber.
They are preserved after death in the hope they can be revived in the future
An expert has claimed scientists could reanimate one of these corpses within the next ten years.

Human corpses frozen by cryogenics could be brought back to life in the next decade, an expert has claimed.

Around 350 people worldwide have had their corpse preserved at low temperatures immediately after death in the hope it can be revived in the future.

Dennis Kowalski, president of the Michigan-based Cryonics Institute – an organisation fronting the human freezing process – has now claimed scientists could reanimate one of these corpses within the next ten years.

Human corpses frozen by cryogenics could be brought back to life in the next decade, an expert has claimed. Around 350 people worldwide have had their corpse preserved at low temperatures immediately after death in the hope it can be revived in the future (file photo).

Speaking to the Daily Star, Mr Kowalski, 49, said: ‘If you take something like CPR, that would have seemed unbelievable 100 years ago. Now we take that technology for granted.

‘Cryonically bringing someone back to life should definitely be doable in 100 years, but it could be as soon as ten.’

Mr Kowalksi’s Cryonics Institute has almost 2,000 people signed up to be frozen after they die.

The firm already has 160 patients frozen in specialised tanks of liquid nitrogen at its headquarters.

Mr Kowalski said that when the first patients are reanimated depends on the rate at which modern medicine improves.

‘It depends on how much technology like stem-cells advances,’ he said.

Cryonics, also known as cryogenics and cryopreservation, is the art of freezing a dead body or body parts in order to preserve them.


Dennis Kowalski (pictured), president of the US-based Cryonics Institute – an organisation fronting the human freezing process – has now claimed scientists could reanimate one of these corpses within the next ten years

CRYONICS: THE FACTS
WHAT IS CRYONICS?

The deep freezing of a body to -196°C (-321°F).

Anti-freeze compounds are injected into the corpse to stop cells being damaged.

The hope is that medical science will advance enough to bring the patient back to life.

Two main US organisations carry out cryonics in the US: Alcor, in Arizona, and the Cryonics Institute, in Michigan.

Russian firm KrioRus is one of two facilities outside the US to offer the service, alongside Alcor’s European laboratory in Portugal.

HOW IS IT MEANT TO WORK?

The process can only take place once the body has been declared legally dead.

Ideally, it begins within two minutes of the heart stopping and no more than 15.

The body must be packed in ice and injected with chemicals to reduce blood clotting.

At the cryonics facility, it is cooled to just above 0°C and the blood is replaced with a solution to preserve organs.

Cryonpreservation is the deep freezing of a body to – 196°C (-321°F). Anti-freeze compounds are injected into the corpse to stop cells being damaged

The body is injected with another solution to stop ice crystals forming in organs and tissues, then cooled to -130°C.

The final step is to place the body into a container which is lowered into a tank of liquid nitrogen at -196°C.

WHAT’S THE CHANCE OF SUCCESS?

Many experts say there is none.

Organs such as the heart and kidneys have never been successfully frozen and thawed.

It is even less likely a whole body, and the brain, could be without irreversible damage.

HOW MUCH DOES IT COST?

Charges at the Cryonics Institute start at around £28,000 ($35,000) to ‘members’ for whole-body cryopreservation.

Rival group Alcor charges £161,000 ($200,000) while KrioRus’ procedure will set you back £29,200 ($37,600).

HOW LONG BEFORE PEOPLE CAN BE BROUGHT BACK TO LIFE?

Cryonics organisations claim it could be decades or even centuries.

However, medical experts say once cells are damaged during freezing and turned to ‘mush’ they cannot be converted back to living tissue, any more than you can turn a scrambled egg back into a raw egg.

Advocates see it as a miracle procedure to cheat death, with the hope that they will be revived once medical science has progressed far enough to cure whatever killed them.

Currently, it is only legal to freeze someone when they have just been declared dead.

The freezing process must begin as soon as the patient dies in order to prevent brain damage, with facilities currently available in Russia, the US and Portugal.

In the procedure, the body is cooled in an ice bath to gradually reduce its temperature bit by bit.

Experts then drain the blood and replace it with an anti freeze fluid to stop harmful ice crystals forming in the body.

Source: http://www.dailymail.co.uk

Comments

Science & Technology

NTP nuclear rocket engine will take humans to Mars in just three months

Although the romance of the peaceful atom has subsided since the mid-1960s, the idea of ​​using nuclear reactors for “civilian” purposes is still regularly returned. The new nuclear rocket engine (NRM) will deliver a man to Mars much faster than is possible now.

The danger of cosmic radiation is much more serious than the risk of infection from an accident with such an engine. The most dangerous of all the constraining vectors for projects of sending people to other bodies in the solar system is cosmic radiation. Radiation from our star and galactic rays can seriously damage the health of the mission crew. Therefore, when planning flights to Mars, engineers and scientists try to reduce travel time as much as possible.

One promising way to get to the Red Planet in just three months could be a new NTP engine. Its concept was developed and submitted to NASA by Ultra Safe Nuclear Technologies ( USNC-Tech ) from Seattle, USA. The name of the unit is simply deciphered – Nuclear Thermal Propulsion ( NTP ), that is, “thermal nuclear power plant”. The novelty differs from its previously created or invented counterparts in the most secure design.

A key component of USNC’s development is mid – grade uranium fuel “pellets”. They contain 5% to 20% of the highly reactive isotope U- 235 coated with zirconium carbide ceramics. This degree of enrichment lies roughly halfway between the “civilian” nuclear power plants and the military. The proprietary ceramic coating technology makes the tablets incredibly resistant to mechanical damage and extreme temperatures.

Schematic diagram of a thermal nuclear rocket engine / © Wikipedia |  Tokono
Schematic diagram of a thermal nuclear rocket engine / © Wikipedia | Tokono

The company promises that their fuel elements are significantly superior in these parameters to those currently used at nuclear power plants. As a result, the engine will have a higher specific impulse with a lower degree of uranium enrichment than in earlier versions of NRE. In addition to the flight to Mars, among the goals of the ambitious project are other missions within the solar system. The perspectives of the concept will soon be considered by specialists from NASA and the US Department of Defense ( DoD ). Perhaps departments will even allow its commercial use by private companies.

Theoretically, NRE based on modern technologies can have a specific impulse (SR) seven times higher than that of chemical jet engines. And this is one of the key performance parameters. At the same time, unlike electric and plasma ones, the ID of a nuclear rocket engine is combined with high thrust. One of the limiting factors in the use of NRE, in addition to safety issues, are extremely high temperatures in the reactor core.

The higher the temperature of the gases flowing out of the engine, the more energy they have. And accordingly, they create traction. However, mankind has not yet come up with relatively inexpensive and safe materials that can withstand more than three thousand degrees Celsius without destruction. The solution created by USNC will operate at the limit of modern materials science (3000 ° C) and have a specific impulse twice that of the best liquid-propellant engines.

Tests of the first nuclear jet engine in 1967 / © NASA
Tests of the first nuclear jet engine in 1967 / © NASA

The official press release does not specify which working body will be used in NTP . Usually, in all NRE projects, the reactor core heats hydrogen, less often ammonia. But, since we are talking about a long-term mission, the creators could have chosen some other gas. Keeping liquid hydrogen on board for three months is no easy task. But you still need to invent something for the way back.

Continue Reading

Science & Technology

Scientist Peter Scott-Morgan is set to become “the world’s first complete cyborg”

Scientist and roboticist Peter Scott Morgan, who is using an advanced version of Stephen Hawking's communication system, built by Intel. INTEL

Two years ago scientist Peter Scott-Morgan was diagnosed with motor neuron disease, also known as Lou Gehrig’s disease, and today he is still fighting for a new life, not just for survival.

This October, Dr. Scott-Morgan is on track to become the world’s first full-fledged cyborg, potentially giving him more years of life.

The world’s first complete cyborg

It was in 2017 that Dr. Peter Scott-Morgan (a brilliant robotics writer, scientific writer, and talented speaker) was diagnosed with degenerative motor neuron disease that ultimately paralyzed his entire body except his eyes.

The diagnosis is understandably grim, especially considering that he has only two years to live, but he has not given up the fight.

Teaming up with world-class organizations with expertise in artificial intelligence, Dr. Scott-Morgan is transforming himself into what he calls “the world’s first fully fledged cyborg.”

“And when I say ‘Cyborg’, I mean not just that some kind of payment will be implanted in me, I mean that I will become the most advanced human cybernetic organism ever created on Earth for 13.8 billion years. My body and brain will be irreversibly changed, ”says Dr. Scott-Morgan.

What does it mean to be human

According to Dr. Scott-Morgan, he will become part robot and part living organism. Moreover, the change will not be one-time, but with subsequent updates.

“I have more updates in the process than Microsoft ,” says Dr. Scott-Morgan.

AI-powered creative expression

The cyborg artist is a great example of the power of human-AI collaboration. AI uses the data that make up Peter’s digital portrait ( articles, videos, images, and social media ) and is trained to recognize key ideas, experiences, and images.

Peter will introduce a theme, AI will suggest composition, and Peter will apply images to suggest style and mood. Peter will direct the AI ​​to render a new digital image that none of them could create alone.

A unique blend of AI and human, reflects Peter’s creative and emotional self – a critical aspect of what it means to be human.

Peter 2.0

This October, Dr. Scott-Morgan will undergo what he calls the latest procedure that will transform him into “Complete Cyborg”.

October 9 he tweeted a photo of himself, writing the following:

“This is my last post as Peter 1.0. Tomorrow I will trade my vote for potentially decades of life as we complete the last medical procedure for my transition to Full Cyborg, in the month that I was told statistically I would be dead. I am not dying, I am transforming. ! Oh, how I LOVE science !!! “.

Continue Reading

Science & Technology

Japan has developed an inflatable scooter that weighs practically nothing

The University of Tokyo engineers have developed the Poimo inflatable electric scooter, which is created individually for each owner. It is enough to send your photo to the manufacturers – and a personal optimized model will be assembled for you.

The scooter is designed with a special program for the body size of a particular user and his specific fit. Moreover, each owner is free to make any changes to this model. If he makes any changes to the drawing, the program will automatically redesign the electric bike to maintain its strength, stability and controllability. When the model is finished and approved, it is handed over to the manufacturer.

Scooter Poimo

The scooter consists of seven separate inflatable sections that are constructed from durable fabric and sewn with straight stitch. It remains to add electronic components – in particular, a brushless motor and a lithium-ion battery. 

The finished electric scooter weighs about 9 kg and can travel at speeds up to 6 km / h (that is, slightly faster than a pedestrian). It can work for an hour on one charge.

This is how the current version of Poimo looks like in action:

Continue Reading
Advertisement

DO NOT MISS

Trending