Connect with us

Science & Technology

Elon Musk just revealed new details about Starlink, a plan to surround Earth with 12,000 high-speed internet satellites. Here’s how it might work.

SpaceX, the rocket company founded by Elon Musk, is trying to launch an internet revolution.

SpaceX plans to launch a Falcon 9 rocket from Cape Canaveral, Florida. Crammed inside the nosecone will be 60 tabletop-size satellites designed to test an internet network called Starlink.

The launch was originally scheduled for Wednesday, but was delayed twice, and is now set to take place in “about a week,” SpaceX said. The delay, it said, is to allow time for a software update and to “triple-check everything.”

Starlink, once complete, would consist of nearly 12,000 satellites — more than six times the number of all operational spacecraft now in orbit. The goal is to finish the project in 2027, thereby blanketing the Earth with high-speed, low-latency, and affordable internet access.

Even partial deployment of Starlink would benefit the financial sector and bring pervasive broadband internet to rural and remote areas. Completing the project may cost $10 billion or more,according to Gwynne Shotwell, the president and chief operating officer of SpaceX. But Musk said during a call with reporters on Wednesday that it could net the company perhaps $30 to $50 billion per year.

It’s not going to be easy to pull off, though, as Musk acknowledged.

“There is a lot of new technology here. So it’s possible that some of these satellites may not work,” he said. In fact, Musk added that there’s a “small possibility that all of the satellites will not work.”

During Wednesday’s call, Musk also provided new information about Starlink. Industry experts have also used public Federal Communications Commission filings from SpaceX to make educated guesses about Starlink’s workings and scope.

“This is the most exciting new network we’ve seen in a long time,” Mark Handley, a computer-networking researcher at University College London who’s studied Starlink, told Business Insider. He added that the project could affect the lives of “potentially everybody.”

Here’s how Starlink might work and how it could change the internet as we know it.

Starlink aims to solve two big problems with the modern internet: a lack of pervasive and affordable connections, and a significant lag between distant locations. SpaceX could make billions of dollars by fixing those issues.

SpaceX founder Elon Musk.

SpaceX plans to launch 60 close-to-production Starlink satellites at a time with its Falcon 9 rockets. Each satellite weighs about 500 pounds (227 kilograms) and is roughly the size of an office desk. They’ll deploy into orbit about 273 miles (440 kilometers) up.

SpaceX stuffed a fleet of 60 Starlink internet-providing satellites into the nosecone of a Falcon 9 rocket for a launch in May.

Source: SpaceX

Musk said it will take about 400 satellites to establish “minor” internet coverage and 800 satellites for “moderate” or “significant operational” coverage. The immediate major goal is to deploy nearly 1,600 satellites about 273 miles (440 kilometers) high.

An illustration of Starlink.

To understand the motivation behind SpaceX’s Starlink project, you have to understand the current limitations of our internet infrastructure. The internet is, in its simplest form, a series of connected computers. We pay service providers for routing our data to and from a web of devices.

A router connecting multiple computers to the internet via cables.

A lot of our data is sent in pulses of light through fiber-optic cables. More packets of information can go farther with a stronger signal that way than they could via electrical signals sent through metal wires.

Source: Business Insider

But fiber is fairly expensive and tedious to lay, especially between locations on opposite sides of the Earth.

Even within a country, achieving a direct wired path from one location to another is rare. Relying on ground cables also leaves many regions poorly connected.

Cables have a speed limit, too: Light moves through the vacuum of space about 47% faster than it can through solid fiber-optic glass.

A prism bends and splits up white light into a rainbow of colors because the speed of light is slower in glass than it is in air.

Source: Florida State University

This isn’t an issue for normal browsing or watching TV. But over international distances, Handley said, it leads to high latency, or lag. The time delay is especially pronounced in long-distance videoconferencing and voice calls made over the web.

Data beamed over existing satellites is some of the laggiest. That’s because nearly all those spacecraft orbit from 22,236 miles (35,786 kilometers) up, where they can “float” above one location on Earth. That’s enough distance to cause a more than half-second of lag.

An illustration of two geostationary satellites, which orbit about 22,300 miles above Earth’s surface.

Source: University College London

Handley said that latency matters most to financial institutions. With markets that move billions of dollars in fractions of a second, any delay can lead to big losses over a competitor with a less laggy (and thus more up-to-date) connection to the web.

High-frequency-trading companies will try almost any new technology to learn about market changes before a competitor.

SpaceX wants to cut that long-distance lag while also providing internet access almost anywhere in the world.

The planet as seen from low-Earth orbit, or about 250 miles above the surface.

Source: Business Insider

In February 2018, SpaceX launched its first two Starlink prototypes, called Tintin-A and Tintin-B. The test helped demonstrate the basic concept and refine the satellite design.

A camera on the second stage of a Falcon 9 rocket shows Earth, the freshly deployed Paz satellite, and two experimental SpaceX satellites.

Source: Business Insider

In the launch planned for tonight, SpaceX will deploy each of the 60 satellites from the stack by very slowly rotating it in microgravity. “This will look kind of weird compared to normal satellite deployments,” Musk said. “It will seem like spreading a deck of cards on a table.”

A magician does a trick with a deck of playing cards.

Source: Business Insider

From there, the satellites will use Hall thrusters (or ion engines) to rise to an altitude of about 342 miles (550 kilometers). This will be about 65 times closer to Earth than geostationary satellites — and that much less laggy.

A 13-kilowatt Hall thruster, or ion engine, tested at NASA’s Glenn Research Center.

Each final Starlink spacecraft will link to four others using lasers. No other internet-providing satellites do this, Handley said, and it’s what would make them special: They can beam data over Earth’s surface at nearly the speed of light, bypassing the limitations of fiber-optics.

An illustration of Starlink showing how each satellite connects to four others with laser beams.

Source: University College London

This initial batch of satellites won’t use laser interlinks. Instead, Musk says the company will (only at first) link them via ground connections. A handful of steerable antennas that can track satellites will be used to “talk” to the satellites.

Satellite-tracking antennas in South Texas.

In the future, Musk says, users will connect to Starlink with terminals that cost about $200 and can steer an antenna beam without moving parts. “It basically looks like a sort of a small- to medium-size pizza,” Musk said. SpaceX has asked the FCC to build 1 million of the small ground stations.

Rows of pizza boxes.

Source: FCC

That’s small enough to add to a home. “There’s also no reason one of these couldn’t be flat and thin enough to put on the roof of a car,” Handley said.

A Tesla Model Y.

Musk said Starlink terminals would also easily fit on ships, airplanes, and other mobile devices, enabling these vehicles to have better broadband connections than what’s available today.

Musk said just 1,000 satellites are required “for the system to be economically viable.” He noted that’s “obviously a lot of satellites, but it’s way less than 10,000 or 12,000.”

SpaceX founder Elon Musk.

Once Starlink has hundreds of laser-linked satellites in its network, their connections could move data at close to light-speed along fairly direct paths. Handley said he thinks Starlink’s initial layout is designed to prioritize east-west connections.

An illustration of Starlink showing the shortest path in the network between New York and London.

Starlink’s best paths will always change, since the satellites will always be moving. But the typical round-trip data speed from New York to London, for example, may be 15% less laggy than fiber-optic connections and 40% less laggy than the internet generally.

In this example, Starlink has many options to meet or exceed an ideal and theoretical fiber-optic connection’s speed.

The advantages of Starlink improve dramatically over very long distances. (Over short distances, Handley said, fiber-optic will win.)

An illustration of Starlink showing the shortest path in the network between London and Singapore.

Handley said north-south connections wouldn’t be as good at first, as data would zigzag far out of the way to make its shortest round trip. So initially, Starlink might not be as fast as fiber for these connections.

An illustration of Starlink showing the shortest path in the network between London and Johannesburg, South Africa.

After it gets about 1,600 satellites orbiting at 342 miles up, SpaceX hopes to launch another 2,800 satellites at altitudes between 684 and 823 miles off Earth’s surface (1,100 to 1,325 kilometers). Some would orbit over Earth’s poles to solve tricky north-south connections and help bring access to Alaska.

This image shows roughly 4,400 satellites of Starlink’s first phase deployed in three orbital “shells.”

Half of the maximum 4,400 low-Earth orbit satellites are supposed to be deployed by 2024, and the full constellation by 2027. If SpaceX doesn’t hit that deadline, the FCC can freeze the maximum number of satellites at the number the company already has in orbit.

Source: Space News

But SpaceX is not stopping with 4,400 satellites in low-Earth orbit. It also plans to roll out 7,500 satellites in very-low-Earth orbits, or about 210 miles (338 kilometers) in altitude.

In rural and remote areas, even a partially complete Starlink network could bring broadband internet speeds rivaling those found in well networked cities. About 800 would provide global coverage, Musk said.

While financial companies and teleconference businesses should benefit from Starlink, Handley said, regular internet users probably wouldn’t see much benefit because of limited capacity.

Each satellite launch could handle about 40,000 users streaming 4K video at once, based on statements provided by Musk. However, the exact numbers depend on how many satellites are launched, how well ground stations work, and a variety of other details.

Sources: NetflixMIT

“If millions of people want to hop on to Starlink all at one time, that is just not going to work” within a populated area like a city, Handley said. The problem is akin to a cell tower being overloaded with too many users, which can slow or disrupt connectivity.

A mobile network tower.

With so many new satellites in orbit, spaceflight experts are also concerned about the potential to create space junk that could damage other spacecraft.

An illustration of a satellite damaged by space debris.

Pieces of space debris can travel a dozen times faster than a bullet shot from a gun. At such speeds, even a small piece of metal can blow apart a satellite, leading to the creation of more high-speed debris.

A simulation of space debris created by India’s Mission Shakti anti-satellite missile test on March 27.

Handley said SpaceX’s initial plan to combat this problem seems sensible, though. Each satellite could use its Hall thruster to drop from orbit and destroy itself. The first Starlink satellites will also be at low-enough altitudes for atmospheric gases to slow them down and crash them back to Earth within one to five years.

An illustration of a spacecraft breaking apart and burning up as it reenters Earth’s atmosphere.

“They’ll be going through a very rapid learning phase, and there’s a fair chance they’ll get some of it wrong,” Handley said of SpaceX.

In addition, Musk said each Starlink satellite will be fed the latest NORAD tracking information for debris. The spacecraft will use artificial intelligence software and its thruster to avoid collisions with known hunks of space junk.

An illustration of a field of orbital debris, or space junk, circling Earth.

For the indefinite future, SpaceX plans to launch 60 Starlink satellites at a time with its Falcon 9 rockets, which are partly reusable and have already successfully launched nearly five dozen space missions.

The Es’hail-2 mission launches toward space aboard one of SpaceX’s Falcon 9 rockets on November 15.

But if SpaceX is to send up all 12,000 satellites by the end of 2027, it will have to launch, on average, about 120 Starlink spacecraft a month.

Flames spewing from the nine engines of a Falcon 9 rocket as it launches the Es’hail-2 mission to orbit.

That translates to two Falcon 9 rocket launches a month, on SpaceX’s dime, on top of its growing list of commercial and government launch customers.

SpaceX’s Crew Dragon capsule atop a Falcon 9 rocket in Cape Canaveral, Florida. The spacecraft is part of NASA’s Commercial Crew Program to launch astronauts into orbit from US soil.

This also does not account for the replacement of satellites, which are designed to last about five years. “It’s not just doing it once. It’s completely ongoing,” Handley said. “So you’re committed to launching 12,000 every five years.”

A SpaceX Falcon 9 rocket launching toward space carrying the Spanish Paz satellite and two experimental Starlink satellites.

Handley said he doesn’t think SpaceX’s existing rockets are sufficient for full deployment. “I think this requires Starship,” he said. Starship, a giant, reusable system that’s still in development, could launch hundreds of Starlink satellites at once, perhaps at 10% of the cost of a Falcon 9 launch.

An illustration of SpaceX’s upcoming Starship spaceship (left), Super Heavy rocket booster (right), and integrated Starship-Super Heavy launch system (center).

So while Musk often speaks about Starship in terms of settling Mars, Handley said he thinks Starlink is dependent on it, too. “You will have these very, very capable, fully reusable launchers sitting around waiting to go to Mars every two years,” he said. “What are you going to do with them in between?”

Musk and SpaceX are developing a stainless-steel rocket ship called Starship.

SpaceX is developing Starship concurrently in Texas and Florida. Musk said he plans to present new details about the system next month.

A prototype of SpaceX’s Starship rocket stands vertically at the company’s launch site in Boca Chica, Texas.

Correction (May 26, 2019): A bandwidth of 1 Tbps per launch might support 40,000 users trying to stream 4K (or ultra-high-definition) content at once, not 1,100 users, as we previously reported.

This story has been updated with new information.

Source www.businessinsider.com

Comments

Science & Technology

Japan has developed an inflatable scooter that weighs practically nothing

The University of Tokyo engineers have developed the Poimo inflatable electric scooter, which is created individually for each owner. It is enough to send your photo to the manufacturers – and a personal optimized model will be assembled for you.

The scooter is designed with a special program for the body size of a particular user and his specific fit. Moreover, each owner is free to make any changes to this model. If he makes any changes to the drawing, the program will automatically redesign the electric bike to maintain its strength, stability and controllability. When the model is finished and approved, it is handed over to the manufacturer.

Scooter Poimo

The scooter consists of seven separate inflatable sections that are constructed from durable fabric and sewn with straight stitch. It remains to add electronic components – in particular, a brushless motor and a lithium-ion battery. 

The finished electric scooter weighs about 9 kg and can travel at speeds up to 6 km / h (that is, slightly faster than a pedestrian). It can work for an hour on one charge.

This is how the current version of Poimo looks like in action:

Continue Reading

Science & Technology

Excerpts from Elon Musk’s speech at the Martian Society convention

Elon Musk’s comments with questions relayed from the Mars Society Membership by Dr. Robert Zubrin, James L. Burk, and Carie Fay. Following Elon’s 30 min time, Dr. Zubrin took additional questions. This special event was part of the 2020 Mars Society Virtual Convention from October 14-18, 2020.

About Starship Test Schedule:

– entering orbit – with a probability of 80% -90% will take place in 2021

– the probability of the return of the ship and the 1st stage in this flight is 50%

– test of refueling in orbit – 2022

– Starship lunar version – 2022 or 2023

– Starship flight to Mars – around 2024

The goal of the Starship is to build a self-sufficient settlement on Mars as quickly as possible. Musk does not rule out the possibility that this will not be achieved during his lifetime. According to his rough estimates, to create a self-sufficient city, it will be necessary to deliver 1 million tons of cargo, which corresponds to 4-5 million tons in a low Earth orbit. Modern single-use launch vehicles are capable of removing less than 1% of this value.

“Disposable launch vehicles are completely stupid. They are a waste of time. I think people need to stop wasting time on this. If you try to sell a disposable plane, you will be thrown out of the office. If you try to sell a disposable car, you will also be thrown out of the office. “

A series of questions and answers followed:

What is the best landing site on Mars?

– I’m not sure about that. But I can name the criteria. The first of these is latitude: most likely it will be in the northern hemisphere, far enough to the north to have water ice, but to still have enough sunlight.It also needs to be low to get the most benefit from atmospheric braking.

How do you prioritize mission priorities: research, infrastructure construction, and science?

– The first will be the construction of a fuel plant.

A question from a teenager who wants to become an engineer and robot maker with a dream to work at SpaceX: what is the most important education in order to become an engineer?

– There are many varieties of this profession: you can be an aerospace engineer, in the field of electronics, software, or a chemical engineer involved in creating safe production of fuels. I think physics is a good foundation for critical thinking.

Boring Company was originally conceived as a tunnel manufacturing firm on Mars?

– No. It was originally something of a joke. I thought tunnels were a good solution to reduce the traffic problem in cities and improve the quality of life by turning parking lots into green parks. To do this, you need to go to 3d [get away from the “flat” infrastructure – approx. per.]. I think tunnels are good for Mars too. But there you need a lot lighter equipment: you don’t care about mass on Earth, but you will have to take care of it a lot when going to Mars.

At Boring Company, have you learned a lot of technology that might come in handy on Mars?

– I think, yes.

Do you have any tips for young people who love Mars but don’t know how to participate in its settlement?

– I think any strong advocate of the need to conquer Mars matters. People often don’t even think about it. I often talk to people who don’t even know about it. Therefore, I consider it important for humanity and consciousness in general to bring a discussion about this to society. Talking about it with friends and acquaintances – I think this is what we should do. In my estimate, we will spend less than 1% of our efforts on Mars exploration, exactly less than healthcare, perhaps even less than cosmetics – this will be enough to make life multi-planetary. But this requires people to start talking about it 100 times more often. I think this is what really matters. [the entire cosmonautics of the world is $ 424 billion a year, while cosmetics is $ 532 billion, and tobacco production is $ 849 billion – approx. per.]

What’s the coolest part about Starship development?

– I think the coolest detail is the ability to work with a great group of engineers and come up with interesting solutions. I think the best thing is the opportunity to work with smart and creative people who come up with solutions that were not available before. This is a great reward.

What do you focus on when hiring, especially with regard to engineers?

“We’re looking for signs of exceptional ability. Or at the very least, striving to do exceptional things at SpaceX.

Are you planning to make a Mars-Earth communication system like Starlink?

– Yes, I think we will use a laser, probably launched into orbit, to avoid atmospheric diffraction. Thus, it will be a laser beam going from the orbit of the Earth to the orbit of Mars. And also relay satellites in solar orbit, since the laser beam cannot be sent through the Sun [when it is between Mars and Earth – approx. per.].

Can Starship be used for other destinations like Venus and other planets?

– Starship will be able to travel to any target in the solar system that has a solid surface when fuel depots appear. It is not the kind of transport that will take us to other stars, but when we become a multi-planetary species, we will create a demand for innovation in space travel that will ultimately lead us to interstellar travel.

Continue Reading

Science & Technology

Cern Scientists Plan an Impressive Experiment – They Will Come Into A Parallel Universe

Cern scientists are once again preparing to impress the entire planet and become the focus of discussions with the new experiment they are planning.

An experiment that, if it brings the fascinating result that scientists have in mind,  will change the way we think about the world , will take place in the next few days at the Large Hadron Collider, the European nuclear center, Geneva CERN Research.

The astonishingly LHC complex, the largest, most energetic elemental accelerator in the world,  will be “fired” for the first time to its highest energy levels, in an effort to detect – or even create – tiny black holes. 

If it succeeds, then, a completely new universe will be revealed – rewriting not only the books of physics, but also the books of philosophy! 

It is possible, however,  that gravity from our universe will “leak” into this parallel universe, as LHC scientists say. 

From the Higgs boson to dark matter and the parallel universe

According to the British Express, the experiment is sure to “trigger” the critics, who are worried about the LHC, many of whom warn that the elementary particle accelerator will mark the end of our universe, creating a of the black hole.

Nevertheless,  Geneva has remained … intact since 2008, when the LHC began its spectacular “work”.

The first scientists at the Large Hadron Collider proved the existence of the Higgs boson – a key building block of the universe – and the LHC appears to be on track to locate “dark matter” – a previously undetectable force now considered that it constitutes the majority of matter in the universe, being, in fact, the reason why the latter is constantly expanding and moving away. 

So next week’s experiment is considered to change the game. 

The truth is out there

Mir Faizal, one of three heads of the three natural groups behind the experiment, said: 

“Like many parallel sheets, which are two-dimensional objects (width and length) can exist in a third dimension (height) , so parallel universes can also exist in higher dimensions. We anticipate that gravity can leak into extra dimensions, and if that happens, then tiny black holes can be produced in the LHC. 

Normally, when people think of the multiverse, they think of the interpretation of quantum mechanics by many worlds, where every possibility is realized. This cannot be tested and so it is a philosophy and not a science. We do not mean this with parallel universes. What we mean is real universes, in extra dimensions. The truth is out there.”

Continue Reading
Advertisement

DO NOT MISS

Trending