via io9:
This could be historic: Astronomers from Leicester University have detected a strange signal in the X-ray spectrum that appears to be a signature of ‘axions’ — a hypothetical dark matter particle. It could take years to confirm, but this may be the first direct detection and identification of dark matter.
The study has the potential to significantly advance our understanding of dark matter and the way our Universe works. Though it has never observed directly, astronomers are certain dark matter exists because, without it, galaxies would just unravel and fly apart. Moreover, even though it doesn’t emit or absorb light, it exerts gravitational pull on celestial objects we can observe. To put it bluntly, it’s dark matter that holds the Universe together — and it may comprise up to 85% of all the stuff within it.
The idea of axions has been around for a while. It was postulated by the Peccei-Quinn theory in 1977 to resolve a nasty problem in quantum physics. Only later did physicists realize that it was a viable candidate for the cold dark matter implied to exist by astronomical observations. According to theory, axions are able to ‘feel’ electromagnetic interactions despite not carrying an electromagnetic charge. This would imply that, should an axion come into contact with a magnetic field, it could convert into photons — which is something we can detect. What’s more, if they do indeed exist, they’re expected to be produced in the core of the Sun.