Connect with us

Science & Technology

Alt. Fuel: Scientists Turn Algae Into Usable Fuel In Less Than An Hour

by Christina Sarich

Algae has already been touted as a natural healing wonder. Not only does have its high chlorophyll content and special plant compounds been shown to defeat cancer and heart disease, it also shows promise as a replacement for butter and eggs in gluten free and vegan baked goods. Even giants like Unilever, which make unhealthy household items, have looked to algae as a replacement for palm oil in many of its products since palm oil production is destroying our bio-diverse rain forests. But perhaps the latest and most promising news about algae, though, is that it could replace petroleum fuels.

Aside from polluting the planet, petroleum-based products, used in cosmetics and a thousand other products including bicycle tires, fertilizer, paint, shag rugs, and ever shoes, are very detrimental. Cancer-causing chemicals like 4-dioxane and other poisonous compounds (up to 10,500 of them) are in everything from soap to bubble bath and toothpaste.

If your lips are chapped and you’ve used petroleum jelly, you’ve also exposed your body to carcinogenic compounds that may temporarily relieve your cracked lips, but can cause breast cancer, lymphoma, Parkinson’s, and a multitude of other diseases.

Alternatively, algae shows promise as a replacement for both petroleum and palm oil as a fuel source. Within algae lay dormant, vast stores of biofuel – estimates compare algae to oil and find that algae can produce from seven to 31 times the fuel than the next best crop that has been planted to power the planet – palm oil. In fact, the U.S. Department of Energy pledged to invest up to $24 million in three research groups looking at ways to commercialize algae-based biofuels, and $16.5 million have already been invested in programs in Hawaii, New Mexico, and California.

The Smithsonian recently reported that scientists turned algae into usable fuel (crude oil) in less than an hour. Scaling up the use of algae would take land about the size of the state of Maryland. Conversely, palm oil is eating up our rainforests globally at a rate of at least 10 times as fast, eating up usable land.

“. . .palm oil is expected to be the world’s most produced and internationally traded edible oil. . .”

While deforestation is happening due to a number of causes, including commercial agriculture, subsistence farming, palm-oil plantations, and clear-cutting for paper and furniture, reducing the land we use for fuel would save our rainforests and also produce a healthy by-product which even oxygenates the air.

Though a Mercedes-Benz bio-diesel E320 was premiered a while back that might conceivably run on algae fuel, most cars haven’t been tested for emissions or gas-mileage. Also, algae has to be grown under very specific conditions, with controlled temperature, relatively high up-front capital expense, and the requirement of phosphorous to grow the plant – which is quickly becoming scarce. Oh, and of course genetic engineers looking at utilizing GMO algae that could through the planet into yet another ‘un’ natural catastrophe (not).

Still, weighing the pros and cons of algae-based bio-fuels, they look quite promising.

Source: Natural Society

Comments

Science & Technology

NTP nuclear rocket engine will take humans to Mars in just three months

Although the romance of the peaceful atom has subsided since the mid-1960s, the idea of ​​using nuclear reactors for “civilian” purposes is still regularly returned. The new nuclear rocket engine (NRM) will deliver a man to Mars much faster than is possible now.

The danger of cosmic radiation is much more serious than the risk of infection from an accident with such an engine. The most dangerous of all the constraining vectors for projects of sending people to other bodies in the solar system is cosmic radiation. Radiation from our star and galactic rays can seriously damage the health of the mission crew. Therefore, when planning flights to Mars, engineers and scientists try to reduce travel time as much as possible.

One promising way to get to the Red Planet in just three months could be a new NTP engine. Its concept was developed and submitted to NASA by Ultra Safe Nuclear Technologies ( USNC-Tech ) from Seattle, USA. The name of the unit is simply deciphered – Nuclear Thermal Propulsion ( NTP ), that is, “thermal nuclear power plant”. The novelty differs from its previously created or invented counterparts in the most secure design.

A key component of USNC’s development is mid – grade uranium fuel “pellets”. They contain 5% to 20% of the highly reactive isotope U- 235 coated with zirconium carbide ceramics. This degree of enrichment lies roughly halfway between the “civilian” nuclear power plants and the military. The proprietary ceramic coating technology makes the tablets incredibly resistant to mechanical damage and extreme temperatures.

Schematic diagram of a thermal nuclear rocket engine / © Wikipedia |  Tokono
Schematic diagram of a thermal nuclear rocket engine / © Wikipedia | Tokono

The company promises that their fuel elements are significantly superior in these parameters to those currently used at nuclear power plants. As a result, the engine will have a higher specific impulse with a lower degree of uranium enrichment than in earlier versions of NRE. In addition to the flight to Mars, among the goals of the ambitious project are other missions within the solar system. The perspectives of the concept will soon be considered by specialists from NASA and the US Department of Defense ( DoD ). Perhaps departments will even allow its commercial use by private companies.

Theoretically, NRE based on modern technologies can have a specific impulse (SR) seven times higher than that of chemical jet engines. And this is one of the key performance parameters. At the same time, unlike electric and plasma ones, the ID of a nuclear rocket engine is combined with high thrust. One of the limiting factors in the use of NRE, in addition to safety issues, are extremely high temperatures in the reactor core.

The higher the temperature of the gases flowing out of the engine, the more energy they have. And accordingly, they create traction. However, mankind has not yet come up with relatively inexpensive and safe materials that can withstand more than three thousand degrees Celsius without destruction. The solution created by USNC will operate at the limit of modern materials science (3000 ° C) and have a specific impulse twice that of the best liquid-propellant engines.

Tests of the first nuclear jet engine in 1967 / © NASA
Tests of the first nuclear jet engine in 1967 / © NASA

The official press release does not specify which working body will be used in NTP . Usually, in all NRE projects, the reactor core heats hydrogen, less often ammonia. But, since we are talking about a long-term mission, the creators could have chosen some other gas. Keeping liquid hydrogen on board for three months is no easy task. But you still need to invent something for the way back.

Continue Reading

Science & Technology

Scientist Peter Scott-Morgan is set to become “the world’s first complete cyborg”

Scientist and roboticist Peter Scott Morgan, who is using an advanced version of Stephen Hawking's communication system, built by Intel. INTEL

Two years ago scientist Peter Scott-Morgan was diagnosed with motor neuron disease, also known as Lou Gehrig’s disease, and today he is still fighting for a new life, not just for survival.

This October, Dr. Scott-Morgan is on track to become the world’s first full-fledged cyborg, potentially giving him more years of life.

The world’s first complete cyborg

It was in 2017 that Dr. Peter Scott-Morgan (a brilliant robotics writer, scientific writer, and talented speaker) was diagnosed with degenerative motor neuron disease that ultimately paralyzed his entire body except his eyes.

The diagnosis is understandably grim, especially considering that he has only two years to live, but he has not given up the fight.

Teaming up with world-class organizations with expertise in artificial intelligence, Dr. Scott-Morgan is transforming himself into what he calls “the world’s first fully fledged cyborg.”

“And when I say ‘Cyborg’, I mean not just that some kind of payment will be implanted in me, I mean that I will become the most advanced human cybernetic organism ever created on Earth for 13.8 billion years. My body and brain will be irreversibly changed, ”says Dr. Scott-Morgan.

What does it mean to be human

According to Dr. Scott-Morgan, he will become part robot and part living organism. Moreover, the change will not be one-time, but with subsequent updates.

“I have more updates in the process than Microsoft ,” says Dr. Scott-Morgan.

AI-powered creative expression

The cyborg artist is a great example of the power of human-AI collaboration. AI uses the data that make up Peter’s digital portrait ( articles, videos, images, and social media ) and is trained to recognize key ideas, experiences, and images.

Peter will introduce a theme, AI will suggest composition, and Peter will apply images to suggest style and mood. Peter will direct the AI ​​to render a new digital image that none of them could create alone.

A unique blend of AI and human, reflects Peter’s creative and emotional self – a critical aspect of what it means to be human.

Peter 2.0

This October, Dr. Scott-Morgan will undergo what he calls the latest procedure that will transform him into “Complete Cyborg”.

October 9 he tweeted a photo of himself, writing the following:

“This is my last post as Peter 1.0. Tomorrow I will trade my vote for potentially decades of life as we complete the last medical procedure for my transition to Full Cyborg, in the month that I was told statistically I would be dead. I am not dying, I am transforming. ! Oh, how I LOVE science !!! “.

Continue Reading

Science & Technology

Japan has developed an inflatable scooter that weighs practically nothing

The University of Tokyo engineers have developed the Poimo inflatable electric scooter, which is created individually for each owner. It is enough to send your photo to the manufacturers – and a personal optimized model will be assembled for you.

The scooter is designed with a special program for the body size of a particular user and his specific fit. Moreover, each owner is free to make any changes to this model. If he makes any changes to the drawing, the program will automatically redesign the electric bike to maintain its strength, stability and controllability. When the model is finished and approved, it is handed over to the manufacturer.

Scooter Poimo

The scooter consists of seven separate inflatable sections that are constructed from durable fabric and sewn with straight stitch. It remains to add electronic components – in particular, a brushless motor and a lithium-ion battery. 

The finished electric scooter weighs about 9 kg and can travel at speeds up to 6 km / h (that is, slightly faster than a pedestrian). It can work for an hour on one charge.

This is how the current version of Poimo looks like in action:

Continue Reading
Advertisement

DO NOT MISS

Trending